Home Hydroelectric EnergyAu-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like materials for extremely efficient oxygen evolution response

Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like materials for extremely efficient oxygen evolution response

by Marvin Brant
0 comments

  • Wang, M. Y., Wang, Z., Gong, X. Z. & Guo, Z. C. The intensification applied sciences to water electrolysis for hydrogen manufacturing–A evaluation. Renew. Sust. Energ. Rev. 29, 573–588 (2014).

    CAS 

    Google Scholar 

  • Schalenbach, M. & Stolten, D. Excessive-pressure water electrolysis: Electrochemical mitigation of product gasoline crossover. Electrochim Acta 156, 321–327 (2015).

    CAS 

    Google Scholar 

  • Surendranath,Y., Kanan, M. W. & Nocera, D. G. Mechanistic research of the oxygen evolution response by a cobalt-phosphate catalyst at impartial pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Bediako, D. Okay., Surendranath, Y. & Nocera, D. G. Mechanistic research of the oxygen evolution response mediated by a nickel–borate skinny movie electrocatalyst. J. Am. Chem. Soc. 135, 3662–3674 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Paoli, E. A. et al. Oxygen evolution on well-characterized massselected Ru and RuO2 nanoparticles. Chem. Sci. 6, 190–196 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Casalongue, H. G. S. et al. In situ commentary of floor species on iridium oxide nanoparticles in the course of the oxygen evolution response. Angew. Chem. Int. Ed. 53, 7169–7172 (2014).

    Google Scholar 

  • Cheng, N. Y. et al. Cu/(Cu(OH)2-CuO) core/shell nanorods array: in-situ progress and software as an environment friendly 3D oxygen evolution anode. Electrochim. Acta 163, 102–106 (2015).

    CAS 

    Google Scholar 

  • Jin, Okay. et al. Partially oxidized sub-10 nm MnO nanocrystals with excessive exercise for water oxidation catalysis. Sci. Rep. 5, 10279; doi: 10.1038/srep10279 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. C., Koza, J. A. & Switzer, J. A. Conversion of electrodeposited Co(OH)2 to CoOOH and Co3O4, andcomparison of their catalytic exercise for the oxygen evolution response. Electrochim. Acta 140, 359–365 (2014).

    CAS 

    Google Scholar 

  • Zhao, J. et al. Self-template development of hole Co3O4 microspheres from porous ultrathin nanosheets and environment friendly noble metal-free water oxidation catalysts. Nanoscale 6, 7255–7262 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stern, L. A. & Hu, X. L. Enhanced oxygen evolution exercise by NiOx and Ni(OH)2 nanoparticles. Faraday Focus on. 176, 363–379 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Andersen, N. I., Serov, A. & Atanassov, P. Steel oxides/CNT nano-composite catalysts for oxygenreduction/oxygen evolution in alkaline media. Appl. Catal. B–Environ. 163, 623–627(2015).

    CAS 

    Google Scholar 

  • Trotochaud, L., Younger, S. L., Ranney, J. Okay. & Boettcher, S. W. Nickel−iron oxyhydroxide oxygen-evolution electrocatalysts: The function of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Hierarchical cobalt-based hydroxide microspheres for water oxidation. Nanoscale 6, 3376–3383 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Y. F. et al. Graphene-Co3O4 nanocomposite as electrocatalyst with excessive efficiency for oxygen evolution response. Sci. Rep. 5, 7629; doi: 10.1038/srep07629 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, H. F. et al. Hydrothermal steady stream synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 15, 1421–1427 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, C. Z. et al. Nickel cobalt oxide hole nanosponges as superior electrocatalysts for the oxygen evolution response. Chem. Commun. 51, 7851–7854 (2015).

    CAS 

    Google Scholar 

  • Bian, W. Y., Yang, Z. R., Strasser, P. & Yang, R. Z. A CoFe2O4/graphene nanohybrid as an environment friendly bi-functional electrocatalyst for oxygen discount and oxygen evolution. J. Energy Sources 250, 196–203 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Menezes, P. W. et al. Cobalt–manganese-based spinels as multifunctional supplies that unify catalytic water oxidation and oxygen discount reactions. ChemSusChem 8, 164–171 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ramíez, A., Bogdanoff, P., Friedrich, D. & Fiechter, S. Synthesis of Ca2Mn3O8 movies and their electrochemical research for the oxygen evolution response(OER) of water. Nano Vitality 1, 282–289 (2012).

    Google Scholar 

  • Wang, D. D., Chen, X., Evans, D. G. & Yang, W. S. Nicely-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen discount and oxygen evolution reactions. Nanoscale 5, 5312–5315 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J., Yin, X., Tsao, Okay. C., Fang, S. H. & Yang, H. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oygen evolution response. J. Am. Chem. Soc. 136, 14646–14649 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Bikkarolla, S. Okay. & Papakonstantinou, P. CuCo2O4 nanoparticles on nitrogenated graphene as extremely efficientoxygen evolution catalyst. J. Energy Sources 281, 243–251 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Kim, T. W., Woo, M. A., Regis, M. & Choi, Okay. S. Electrochemical synthesis of spinel kind ZnCo2O4 electrodes to be used as oxygen evolution response catalysts. J. Phys. Chem. Lett. 5, 2370–2374 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, M. Q., Jiang, L. X. & Yang, H. G. Ultrathin nanosheets constructed CoMoO4 porous flowers with excessive exercise for electrocatalytic oxygen evolution. Chem. Commun. 51, 14361–14364 (2015).

    CAS 

    Google Scholar 

  • Wang, J., Qiu, T., Chen, X., Lu, Y. L. & Yang, W. S. Hierarchical hole urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution response in alkaline medium. J. Energy Sources 268, 341–348 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Jin, C., Lu, F. L., Cao, X. C., Yang, Z. R. & Yang, R. Z. Facile synthesis and glorious electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen discount and evolution response. J. Mater. Chem. A 1, 12170–12177 (2013).

    CAS 

    Google Scholar 

  • Chen, R., Wang, H. Y., Miao, J. W., Yang, H. B. & Liu, B. A versatile high-performanceoxygenevolution electrode with three-dimensional NiCo2O4 core-shellnanowires. Nano Vitality 11, 333–340 (2015).

    CAS 

    Google Scholar 

  • Su, Y. Z. et al. NiCo2O4/C ready by One-step Intermittent Microwave Heating Technique for Oxygen Evolution Response in Water Splitter. J. Alloys Compd. 617, 115–119 (2014).

    CAS 

    Google Scholar 

  • Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution response (OER) on Ru, Ir and Pt catalysts: A comparative examine of nanoparticles and bulk supplies. ACS Catal. 2, 1765–1772 (2012).

    CAS 

    Google Scholar 

  • Cheng, Y., Shen, P. Okay. & Jiang, S. P. NiOx nanoparticles supported on polyethylenimine functionalized CNTs as environment friendly electrocatalysts for supercapacitor and oxygen evolution response. Int. J. Hydrogen Vitality 39, 20662–20670 (2014).

    CAS 

    Google Scholar 

  • Li, B. B. et al. MoO2–CoO coupled with a macroporous carbon hybrid electrocatalyst for extremely environment friendly oxygen evolution. Nanoscale 7, 16704–16714 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, H. L. et al. Enhancedsupercapacitiveperformance on TiO2@C coaxialnano-rodarraythrough a bio-inspiredapproach. Nano Vitality 15, 75–82 (2015).

    CAS 

    Google Scholar 

  • Li, Z. S., Li, Y. Y., Jiang, S. P., He, G. Q. & Shen, P. Okay. Novel graphene-like nanosheet supported extremely energetic electrocatalysts with ultralow Pt loadings for oxygen discount response. J. Mater. Chem. A 2, 16898–16904 (2014).

    CAS 

    Google Scholar 

  • Chen, S., Duan, J. J., Han, W. & Qiao, S. Z. A Graphene–MnO2 framework as a brand new era of three-dimensional oxygen evolution promoter. Chem. Commun. 50, 207–209 (2014).

    CAS 

    Google Scholar 

  • Zhao, Y. F. et al. Porous graphene wrapped CoO nanoparticles for extremely environment friendly oxygen evolution. J. Mater. Chem. A 3, 5402–5408 (2015).

    CAS 

    Google Scholar 

  • Geng, J., Kuai, L., Kan, E. J., Wang, Q. & Geng, B. Y. Valuable-metal-free Co–Fe–O/rGO synergetic electrocatalysts for oxygen evolution response by a facile hydrothermal route. ChemSusChem 8, 659–664 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Lengthy, X. et al. A strongly coupled graphene and FeNi double hydroxide hybrid as a superb electrocatalyst for the oxygen evolution response. Angew. Chem. Int. Ed. 53, 7584–7588 (2014).

    CAS 

    Google Scholar 

  • Chen, S., Duan, J. J., Jaroniec, M. & Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for extremely environment friendly oxygen evolution. Angew. Chem. Int. Ed. 52, 13567–13570 (2013).

    CAS 

    Google Scholar 

  • Chen, S. & Qiao, S. Z. Hierarchically porous nitrogen-doped graphene NiCo2O4 hybrid paper as a complicated electrocatalytic water-splitting materials. Acs Nano 7, 10190–10196 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, D. U., Kim, B. J. & Chen, Z. W. One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen discount and evolution actions as an environment friendly bi-functional electrocatalyst. J. Mater. Chem. A 1, 4754–4762 (2013).

    CAS 

    Google Scholar 

  • Gao, Z., Yang, W. L., Wang, J., Track, N. N. & Li, X. D. Versatile all-solid-state hierarchical NiCo2O4/porous graphene paper uneven supercapacitors with an distinctive mixture of electrochemical properties. Nano Vitality 13, 306–317 (2015).

    CAS 

    Google Scholar 

  • Li, Y. Y., Li, Z. S. & Shen, P. Okay. Simultaneous formation of ultrahigh floor space and three-dimensional hierarchical porous graphene-like networks for quick and extremely secure supercapacitors. Adv. Mater. 25, 2474–2480 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. Y., Zhang, H. Y. & Shen, P. Okay. Ultrasmall metallic oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Vitality 13, 563–572 (2015).

    CAS 

    Google Scholar 

  • Li, Y. Y., Zhang, Q. W., Zhu, J. L., Wei, X. L. & Shen, P. Okay. A particularly secure MnO2 anode included with 3D porous graphene-like networks for lithium-ion batteries. J. Mater. Chem. A 2, 3163–3168 (2014).

    CAS 

    Google Scholar 

  • Han, X. P. et al. Hydrogenated uniform Pt clusters supported on porous CaMnO3 as a bifunctional electrocatalyst for enhanced oxygen discount and evolution. Adv. Mater. 26, 2047–2051 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. Y., Liu, Z. L., Liang, J. C., Xu, C. W. & Lu, X. H. Facile synthesis of Pd-Mn3O4/C as high-efficient electrocatalyst for oxygen evolution response. J. Mater. Chem. A 2, 18236–18240 (2014).

    CAS 

    Google Scholar 

  • Berenguer, R., Sieben, J. M., Quijada, C. & Morallón, E. Pt- and Ru-doped SnO2−Sb anodes with excessive stability in alkaline medium. ACS Appl. Mater. Interfaces 6, 22778–22789 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Zhuang, Z. B., Sheng, W. C. & Yan, Y. S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic exercise for oxygen evolution response. Adv. Mater. 26, 3950–3955 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Walton, A. S. et al. Interface managed oxidation states in layered cobalt oxide nanoislands on gold. Acs Nano 9, 2445–2453 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Yeo, B. S. & Bell, A. T. Enhanced exercise of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Cui, B., Qin, Z. T., Lin, H. & Li, J. B. Hierarchical wreath-like Au–Co(OH)2 microclusters for water oxidation at impartial pH. Nanoscale 5, 6826–6833 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kuo, C. H. et al. Understanding the function of gold nanoparticles in enhancing the catalytic exercise of manganese oxides in water oxidation reactions. Angew. Chem. Int. Ed. 54, 2345–2350 (2015).

    CAS 

    Google Scholar 

  • Gorlin, Y. et al. Understanding interactions between manganese oxide and gold. That result in enhanced exercise for electrocatalytic water oxidation. J. Am. Chem. Soc. 136, 4920–4926 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. J., Liu, J. F., Li, Y. P., Li, Y. J. & Solar, X. P. Au/NiCo2O4 arrays with excessive exercise for water oxidation. ChemCatChem 6, 2501–2506 (2014).

    Google Scholar 

  • Gao, M. R. et al. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for environment friendly water oxidation. Acs Nano 8, 3970–3978 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Hassan, S., Suzuki, M., Mori, S. & El-Moneim, A. A. MnO2/carbon nanowalls composite electrode for supercapacitor software. J. Energy Sources 249, 21–27 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. & Pöschl, U. Raman microspectroscopy of soot and associated carbonaceous supplies: Spectral evaluation and structural info. Carbon 43, 1731–1742 (2005).

    CAS 

    Google Scholar 

  • Zhu, J. L., Jiang, S. P., Wang, R. H., Shi, Okay. Y. & Shen, P. Okay. One-pot synthesis of a nitrogen and phosphorusdual-doped carbon nanotube array as a extremely efficient electrocatalyst for the oxygen discount response. J. Mater. Chem. A 2, 15448–15453 (2014).

    CAS 

    Google Scholar 

  • Park, E. D. & Lee, J. S. Results of pretreatment circumstances on CO oxidation over supported Au catalysts. J. Catal. 186, 1–11 (1999).

    CAS 

    Google Scholar 

  • Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS 

    Google Scholar 

  • Casella, I. G., Guascito, M. R. & Sannazzaro, M. G. Voltammetric and XPS investigations of nickel hydroxide electrochemically dispersed on gold floor electrodes. J. Electroanal. Chem. 462, 202–210 (1999).

    CAS 

    Google Scholar 

  • Yeo, B. S. & Bell, A. T. In situ Raman examine of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C 116, 8394–8400 (2012).

    CAS 

    Google Scholar 

  • You may also like