Writy.
  • Wind & Solar Energy Portal
  • Solar Energy
  • Solar Panel
  • Wind Energy
  • Wind Turbine
  • Hydroelectric Energy
  • Sea and Marine Energy
  • Solar and Wind Images
No Result
View All Result
Writy.
  • Wind & Solar Energy Portal
  • Solar Energy
  • Solar Panel
  • Wind Energy
  • Wind Turbine
  • Hydroelectric Energy
  • Sea and Marine Energy
  • Solar and Wind Images
No Result
View All Result
Writy.
No Result
View All Result

Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like materials for extremely efficient oxygen evolution response

by Marvin Brant
December 24, 2023
in Hydroelectric Energy
0

  • Wang, M. Y., Wang, Z., Gong, X. Z. & Guo, Z. C. The intensification applied sciences to water electrolysis for hydrogen manufacturing–A evaluation. Renew. Sust. Energ. Rev. 29, 573–588 (2014).

    You might also like

    Battery power online | talent tariffs and technology: us power - "Empowering the Future: Navigating Talent, Rates, and Innovations in US Energy and Digital Infrastructure by 2025"

    “Empowering the Future: Navigating Talent, Rates, and Innovations in US Energy and Digital Infrastructure by 2025”

    May 15, 2025
    Con edison on using ldes technology to help decarbonise nyc - "Revolutionizing New York: Con Edison's Journey with LDES Technology for a Greener Future"

    “Revolutionizing New York: Con Edison’s Journey with LDES Technology for a Greener Future”

    May 7, 2025

    CAS 

    Google Scholar 

  • Schalenbach, M. & Stolten, D. Excessive-pressure water electrolysis: Electrochemical mitigation of product gasoline crossover. Electrochim Acta 156, 321–327 (2015).

    CAS 

    Google Scholar 

  • Surendranath,Y., Kanan, M. W. & Nocera, D. G. Mechanistic research of the oxygen evolution response by a cobalt-phosphate catalyst at impartial pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Bediako, D. Okay., Surendranath, Y. & Nocera, D. G. Mechanistic research of the oxygen evolution response mediated by a nickel–borate skinny movie electrocatalyst. J. Am. Chem. Soc. 135, 3662–3674 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Paoli, E. A. et al. Oxygen evolution on well-characterized massselected Ru and RuO2 nanoparticles. Chem. Sci. 6, 190–196 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Casalongue, H. G. S. et al. In situ commentary of floor species on iridium oxide nanoparticles in the course of the oxygen evolution response. Angew. Chem. Int. Ed. 53, 7169–7172 (2014).

    Google Scholar 

  • Cheng, N. Y. et al. Cu/(Cu(OH)2-CuO) core/shell nanorods array: in-situ progress and software as an environment friendly 3D oxygen evolution anode. Electrochim. Acta 163, 102–106 (2015).

    CAS 

    Google Scholar 

  • Jin, Okay. et al. Partially oxidized sub-10 nm MnO nanocrystals with excessive exercise for water oxidation catalysis. Sci. Rep. 5, 10279; doi: 10.1038/srep10279 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. C., Koza, J. A. & Switzer, J. A. Conversion of electrodeposited Co(OH)2 to CoOOH and Co3O4, andcomparison of their catalytic exercise for the oxygen evolution response. Electrochim. Acta 140, 359–365 (2014).

    CAS 

    Google Scholar 

  • Zhao, J. et al. Self-template development of hole Co3O4 microspheres from porous ultrathin nanosheets and environment friendly noble metal-free water oxidation catalysts. Nanoscale 6, 7255–7262 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stern, L. A. & Hu, X. L. Enhanced oxygen evolution exercise by NiOx and Ni(OH)2 nanoparticles. Faraday Focus on. 176, 363–379 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Andersen, N. I., Serov, A. & Atanassov, P. Steel oxides/CNT nano-composite catalysts for oxygenreduction/oxygen evolution in alkaline media. Appl. Catal. B–Environ. 163, 623–627(2015).

    CAS 

    Google Scholar 

  • Trotochaud, L., Younger, S. L., Ranney, J. Okay. & Boettcher, S. W. Nickel−iron oxyhydroxide oxygen-evolution electrocatalysts: The function of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Hierarchical cobalt-based hydroxide microspheres for water oxidation. Nanoscale 6, 3376–3383 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Y. F. et al. Graphene-Co3O4 nanocomposite as electrocatalyst with excessive efficiency for oxygen evolution response. Sci. Rep. 5, 7629; doi: 10.1038/srep07629 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, H. F. et al. Hydrothermal steady stream synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 15, 1421–1427 (2015).

    See also
    GE compensations initially 2 versions at Jinzhai pumped storage space in China

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, C. Z. et al. Nickel cobalt oxide hole nanosponges as superior electrocatalysts for the oxygen evolution response. Chem. Commun. 51, 7851–7854 (2015).

    CAS 

    Google Scholar 

  • Bian, W. Y., Yang, Z. R., Strasser, P. & Yang, R. Z. A CoFe2O4/graphene nanohybrid as an environment friendly bi-functional electrocatalyst for oxygen discount and oxygen evolution. J. Energy Sources 250, 196–203 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Menezes, P. W. et al. Cobalt–manganese-based spinels as multifunctional supplies that unify catalytic water oxidation and oxygen discount reactions. ChemSusChem 8, 164–171 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ramíez, A., Bogdanoff, P., Friedrich, D. & Fiechter, S. Synthesis of Ca2Mn3O8 movies and their electrochemical research for the oxygen evolution response(OER) of water. Nano Vitality 1, 282–289 (2012).

    Google Scholar 

  • Wang, D. D., Chen, X., Evans, D. G. & Yang, W. S. Nicely-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen discount and oxygen evolution reactions. Nanoscale 5, 5312–5315 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J., Yin, X., Tsao, Okay. C., Fang, S. H. & Yang, H. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oygen evolution response. J. Am. Chem. Soc. 136, 14646–14649 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Bikkarolla, S. Okay. & Papakonstantinou, P. CuCo2O4 nanoparticles on nitrogenated graphene as extremely efficientoxygen evolution catalyst. J. Energy Sources 281, 243–251 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Kim, T. W., Woo, M. A., Regis, M. & Choi, Okay. S. Electrochemical synthesis of spinel kind ZnCo2O4 electrodes to be used as oxygen evolution response catalysts. J. Phys. Chem. Lett. 5, 2370–2374 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, M. Q., Jiang, L. X. & Yang, H. G. Ultrathin nanosheets constructed CoMoO4 porous flowers with excessive exercise for electrocatalytic oxygen evolution. Chem. Commun. 51, 14361–14364 (2015).

    CAS 

    Google Scholar 

  • Wang, J., Qiu, T., Chen, X., Lu, Y. L. & Yang, W. S. Hierarchical hole urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution response in alkaline medium. J. Energy Sources 268, 341–348 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Jin, C., Lu, F. L., Cao, X. C., Yang, Z. R. & Yang, R. Z. Facile synthesis and glorious electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen discount and evolution response. J. Mater. Chem. A 1, 12170–12177 (2013).

    CAS 

    Google Scholar 

  • Chen, R., Wang, H. Y., Miao, J. W., Yang, H. B. & Liu, B. A versatile high-performanceoxygenevolution electrode with three-dimensional NiCo2O4 core-shellnanowires. Nano Vitality 11, 333–340 (2015).

    CAS 

    Google Scholar 

  • Su, Y. Z. et al. NiCo2O4/C ready by One-step Intermittent Microwave Heating Technique for Oxygen Evolution Response in Water Splitter. J. Alloys Compd. 617, 115–119 (2014).

    CAS 

    Google Scholar 

  • Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution response (OER) on Ru, Ir and Pt catalysts: A comparative examine of nanoparticles and bulk supplies. ACS Catal. 2, 1765–1772 (2012).

    CAS 

    Google Scholar 

  • Cheng, Y., Shen, P. Okay. & Jiang, S. P. NiOx nanoparticles supported on polyethylenimine functionalized CNTs as environment friendly electrocatalysts for supercapacitor and oxygen evolution response. Int. J. Hydrogen Vitality 39, 20662–20670 (2014).

    See also
    New York Allocates Million To Help Clear Hydrogen

    CAS 

    Google Scholar 

  • Li, B. B. et al. MoO2–CoO coupled with a macroporous carbon hybrid electrocatalyst for extremely environment friendly oxygen evolution. Nanoscale 7, 16704–16714 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, H. L. et al. Enhancedsupercapacitiveperformance on TiO2@C coaxialnano-rodarraythrough a bio-inspiredapproach. Nano Vitality 15, 75–82 (2015).

    CAS 

    Google Scholar 

  • Li, Z. S., Li, Y. Y., Jiang, S. P., He, G. Q. & Shen, P. Okay. Novel graphene-like nanosheet supported extremely energetic electrocatalysts with ultralow Pt loadings for oxygen discount response. J. Mater. Chem. A 2, 16898–16904 (2014).

    CAS 

    Google Scholar 

  • Chen, S., Duan, J. J., Han, W. & Qiao, S. Z. A Graphene–MnO2 framework as a brand new era of three-dimensional oxygen evolution promoter. Chem. Commun. 50, 207–209 (2014).

    CAS 

    Google Scholar 

  • Zhao, Y. F. et al. Porous graphene wrapped CoO nanoparticles for extremely environment friendly oxygen evolution. J. Mater. Chem. A 3, 5402–5408 (2015).

    CAS 

    Google Scholar 

  • Geng, J., Kuai, L., Kan, E. J., Wang, Q. & Geng, B. Y. Valuable-metal-free Co–Fe–O/rGO synergetic electrocatalysts for oxygen evolution response by a facile hydrothermal route. ChemSusChem 8, 659–664 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Lengthy, X. et al. A strongly coupled graphene and FeNi double hydroxide hybrid as a superb electrocatalyst for the oxygen evolution response. Angew. Chem. Int. Ed. 53, 7584–7588 (2014).

    CAS 

    Google Scholar 

  • Chen, S., Duan, J. J., Jaroniec, M. & Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for extremely environment friendly oxygen evolution. Angew. Chem. Int. Ed. 52, 13567–13570 (2013).

    CAS 

    Google Scholar 

  • Chen, S. & Qiao, S. Z. Hierarchically porous nitrogen-doped graphene NiCo2O4 hybrid paper as a complicated electrocatalytic water-splitting materials. Acs Nano 7, 10190–10196 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, D. U., Kim, B. J. & Chen, Z. W. One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen discount and evolution actions as an environment friendly bi-functional electrocatalyst. J. Mater. Chem. A 1, 4754–4762 (2013).

    CAS 

    Google Scholar 

  • Gao, Z., Yang, W. L., Wang, J., Track, N. N. & Li, X. D. Versatile all-solid-state hierarchical NiCo2O4/porous graphene paper uneven supercapacitors with an distinctive mixture of electrochemical properties. Nano Vitality 13, 306–317 (2015).

    CAS 

    Google Scholar 

  • Li, Y. Y., Li, Z. S. & Shen, P. Okay. Simultaneous formation of ultrahigh floor space and three-dimensional hierarchical porous graphene-like networks for quick and extremely secure supercapacitors. Adv. Mater. 25, 2474–2480 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. Y., Zhang, H. Y. & Shen, P. Okay. Ultrasmall metallic oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Vitality 13, 563–572 (2015).

    CAS 

    Google Scholar 

  • Li, Y. Y., Zhang, Q. W., Zhu, J. L., Wei, X. L. & Shen, P. Okay. A particularly secure MnO2 anode included with 3D porous graphene-like networks for lithium-ion batteries. J. Mater. Chem. A 2, 3163–3168 (2014).

    CAS 

    Google Scholar 

  • Han, X. P. et al. Hydrogenated uniform Pt clusters supported on porous CaMnO3 as a bifunctional electrocatalyst for enhanced oxygen discount and evolution. Adv. Mater. 26, 2047–2051 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. Y., Liu, Z. L., Liang, J. C., Xu, C. W. & Lu, X. H. Facile synthesis of Pd-Mn3O4/C as high-efficient electrocatalyst for oxygen evolution response. J. Mater. Chem. A 2, 18236–18240 (2014).

    See also
    Regulating biodiversity influences of future globe hydropower tanks by critical internet site option

    CAS 

    Google Scholar 

  • Berenguer, R., Sieben, J. M., Quijada, C. & Morallón, E. Pt- and Ru-doped SnO2−Sb anodes with excessive stability in alkaline medium. ACS Appl. Mater. Interfaces 6, 22778–22789 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Zhuang, Z. B., Sheng, W. C. & Yan, Y. S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic exercise for oxygen evolution response. Adv. Mater. 26, 3950–3955 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Walton, A. S. et al. Interface managed oxidation states in layered cobalt oxide nanoislands on gold. Acs Nano 9, 2445–2453 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Yeo, B. S. & Bell, A. T. Enhanced exercise of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Cui, B., Qin, Z. T., Lin, H. & Li, J. B. Hierarchical wreath-like Au–Co(OH)2 microclusters for water oxidation at impartial pH. Nanoscale 5, 6826–6833 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kuo, C. H. et al. Understanding the function of gold nanoparticles in enhancing the catalytic exercise of manganese oxides in water oxidation reactions. Angew. Chem. Int. Ed. 54, 2345–2350 (2015).

    CAS 

    Google Scholar 

  • Gorlin, Y. et al. Understanding interactions between manganese oxide and gold. That result in enhanced exercise for electrocatalytic water oxidation. J. Am. Chem. Soc. 136, 4920–4926 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. J., Liu, J. F., Li, Y. P., Li, Y. J. & Solar, X. P. Au/NiCo2O4 arrays with excessive exercise for water oxidation. ChemCatChem 6, 2501–2506 (2014).

    Google Scholar 

  • Gao, M. R. et al. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for environment friendly water oxidation. Acs Nano 8, 3970–3978 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Hassan, S., Suzuki, M., Mori, S. & El-Moneim, A. A. MnO2/carbon nanowalls composite electrode for supercapacitor software. J. Energy Sources 249, 21–27 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. & Pöschl, U. Raman microspectroscopy of soot and associated carbonaceous supplies: Spectral evaluation and structural info. Carbon 43, 1731–1742 (2005).

    CAS 

    Google Scholar 

  • Zhu, J. L., Jiang, S. P., Wang, R. H., Shi, Okay. Y. & Shen, P. Okay. One-pot synthesis of a nitrogen and phosphorusdual-doped carbon nanotube array as a extremely efficient electrocatalyst for the oxygen discount response. J. Mater. Chem. A 2, 15448–15453 (2014).

    CAS 

    Google Scholar 

  • Park, E. D. & Lee, J. S. Results of pretreatment circumstances on CO oxidation over supported Au catalysts. J. Catal. 186, 1–11 (1999).

    CAS 

    Google Scholar 

  • Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS 

    Google Scholar 

  • Casella, I. G., Guascito, M. R. & Sannazzaro, M. G. Voltammetric and XPS investigations of nickel hydroxide electrochemically dispersed on gold floor electrodes. J. Electroanal. Chem. 462, 202–210 (1999).

    CAS 

    Google Scholar 

  • Yeo, B. S. & Bell, A. T. In situ Raman examine of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C 116, 8394–8400 (2012).

    CAS 

    Google Scholar 

  • Marvin Brant

    Related Stories

    Battery power online | talent tariffs and technology: us power - "Empowering the Future: Navigating Talent, Rates, and Innovations in US Energy and Digital Infrastructure by 2025"

    “Empowering the Future: Navigating Talent, Rates, and Innovations in US Energy and Digital Infrastructure by 2025”

    by Marvin Brant
    May 15, 2025
    0

    Contributed Commentary by Joe Amara, Joe Amara Executive Search  May 6, 2025 | The electricity generation sector has evolved significantly...

    Con edison on using ldes technology to help decarbonise nyc - "Revolutionizing New York: Con Edison's Journey with LDES Technology for a Greener Future"

    “Revolutionizing New York: Con Edison’s Journey with LDES Technology for a Greener Future”

    by Marvin Brant
    May 7, 2025
    0

    This panel was overseen by Allison Weis, global head of storage at the market research and analysis firm Wood Mackenzie....

    Stability analysis of grid connected hydropower plant considering turbine nonlinearity and - Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    by Marvin Brant
    April 28, 2025
    0

    In this investigation, the GCHTGS primarily comprises an upstream reservoir, penstock, governor, hydro-turbine, generator, downstream reservoir, and PG, as illustrated...

    Battery power online | maximizing efficiency and profit in fleet - "Revolutionizing Fleet Charging: Unlocking Profitability and Efficiency with On-Site Batteries and Smart Energy Solutions"

    “Revolutionizing Fleet Charging: Unlocking Profitability and Efficiency with On-Site Batteries and Smart Energy Solutions”

    by Marvin Brant
    April 20, 2025
    0

    Insightful Commentary from Oren Halevi, Chief Product Officer, Driivz    April 14, 2025 | Escalating energy requirements have electricity users and...

    Next Post
    White paper details needs case for uk national floating wind - White paper particulars wants case for UK Nationwide Floating Wind Take a look at Centre : EMEC: European Marine Vitality Centre

    White paper particulars wants case for UK Nationwide Floating Wind Take a look at Centre : EMEC: European Marine Vitality Centre

    Windy

    News About Solar System And Turbine Winds

    • Privacy Policy
    • Contact Us

    © 2022-2023 | WindySolar.com

    No Result
    View All Result
    • Wind & Solar Energy Portal
    • Solar Energy
    • Solar Panel
    • Wind Energy
    • Wind Turbine
    • Hydroelectric Energy
    • Sea and Marine Energy
    • Solar and Wind Images

    © 2022-2023 | WindySolar.com