Wang, M. Y., Wang, Z., Gong, X. Z. & Guo, Z. C. The intensification applied sciences to water electrolysis for hydrogen manufacturing–A evaluation. Renew. Sust. Energ. Rev. 29, 573–588 (2014).
Google Scholar
Schalenbach, M. & Stolten, D. Excessive-pressure water electrolysis: Electrochemical mitigation of product gasoline crossover. Electrochim Acta 156, 321–327 (2015).
Google Scholar
Surendranath,Y., Kanan, M. W. & Nocera, D. G. Mechanistic research of the oxygen evolution response by a cobalt-phosphate catalyst at impartial pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).
Google Scholar
Bediako, D. Okay., Surendranath, Y. & Nocera, D. G. Mechanistic research of the oxygen evolution response mediated by a nickel–borate skinny movie electrocatalyst. J. Am. Chem. Soc. 135, 3662–3674 (2013).
Google Scholar
Paoli, E. A. et al. Oxygen evolution on well-characterized massselected Ru and RuO2 nanoparticles. Chem. Sci. 6, 190–196 (2015).
Google Scholar
Casalongue, H. G. S. et al. In situ commentary of floor species on iridium oxide nanoparticles in the course of the oxygen evolution response. Angew. Chem. Int. Ed. 53, 7169–7172 (2014).
Cheng, N. Y. et al. Cu/(Cu(OH)2-CuO) core/shell nanorods array: in-situ progress and software as an environment friendly 3D oxygen evolution anode. Electrochim. Acta 163, 102–106 (2015).
Google Scholar
Jin, Okay. et al. Partially oxidized sub-10 nm MnO nanocrystals with excessive exercise for water oxidation catalysis. Sci. Rep. 5, 10279; doi: 10.1038/srep10279 (2015).
Google Scholar
Liu, Y. C., Koza, J. A. & Switzer, J. A. Conversion of electrodeposited Co(OH)2 to CoOOH and Co3O4, andcomparison of their catalytic exercise for the oxygen evolution response. Electrochim. Acta 140, 359–365 (2014).
Google Scholar
Zhao, J. et al. Self-template development of hole Co3O4 microspheres from porous ultrathin nanosheets and environment friendly noble metal-free water oxidation catalysts. Nanoscale 6, 7255–7262 (2014).
Google Scholar
Stern, L. A. & Hu, X. L. Enhanced oxygen evolution exercise by NiOx and Ni(OH)2 nanoparticles. Faraday Focus on. 176, 363–379 (2014).
Google Scholar
Andersen, N. I., Serov, A. & Atanassov, P. Steel oxides/CNT nano-composite catalysts for oxygenreduction/oxygen evolution in alkaline media. Appl. Catal. B–Environ. 163, 623–627(2015).
Google Scholar
Trotochaud, L., Younger, S. L., Ranney, J. Okay. & Boettcher, S. W. Nickel−iron oxyhydroxide oxygen-evolution electrocatalysts: The function of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).
Google Scholar
Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).
Google Scholar
Zhang, Y. et al. Hierarchical cobalt-based hydroxide microspheres for water oxidation. Nanoscale 6, 3376–3383 (2014).
Google Scholar
Zhao, Y. F. et al. Graphene-Co3O4 nanocomposite as electrocatalyst with excessive efficiency for oxygen evolution response. Sci. Rep. 5, 7629; doi: 10.1038/srep07629 (2015).
Google Scholar
Liang, H. F. et al. Hydrothermal steady stream synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 15, 1421–1427 (2015).
Google Scholar
Zhu, C. Z. et al. Nickel cobalt oxide hole nanosponges as superior electrocatalysts for the oxygen evolution response. Chem. Commun. 51, 7851–7854 (2015).
Google Scholar
Bian, W. Y., Yang, Z. R., Strasser, P. & Yang, R. Z. A CoFe2O4/graphene nanohybrid as an environment friendly bi-functional electrocatalyst for oxygen discount and oxygen evolution. J. Energy Sources 250, 196–203 (2014).
Google Scholar
Menezes, P. W. et al. Cobalt–manganese-based spinels as multifunctional supplies that unify catalytic water oxidation and oxygen discount reactions. ChemSusChem 8, 164–171 (2015).
Google Scholar
Ramíez, A., Bogdanoff, P., Friedrich, D. & Fiechter, S. Synthesis of Ca2Mn3O8 movies and their electrochemical research for the oxygen evolution response(OER) of water. Nano Vitality 1, 282–289 (2012).
Wang, D. D., Chen, X., Evans, D. G. & Yang, W. S. Nicely-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen discount and oxygen evolution reactions. Nanoscale 5, 5312–5315 (2013).
Google Scholar
Kim, J., Yin, X., Tsao, Okay. C., Fang, S. H. & Yang, H. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oygen evolution response. J. Am. Chem. Soc. 136, 14646–14649 (2014).
Google Scholar
Bikkarolla, S. Okay. & Papakonstantinou, P. CuCo2O4 nanoparticles on nitrogenated graphene as extremely efficientoxygen evolution catalyst. J. Energy Sources 281, 243–251 (2015).
Google Scholar
Kim, T. W., Woo, M. A., Regis, M. & Choi, Okay. S. Electrochemical synthesis of spinel kind ZnCo2O4 electrodes to be used as oxygen evolution response catalysts. J. Phys. Chem. Lett. 5, 2370–2374 (2014).
Google Scholar
Yu, M. Q., Jiang, L. X. & Yang, H. G. Ultrathin nanosheets constructed CoMoO4 porous flowers with excessive exercise for electrocatalytic oxygen evolution. Chem. Commun. 51, 14361–14364 (2015).
Google Scholar
Wang, J., Qiu, T., Chen, X., Lu, Y. L. & Yang, W. S. Hierarchical hole urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution response in alkaline medium. J. Energy Sources 268, 341–348 (2014).
Google Scholar
Jin, C., Lu, F. L., Cao, X. C., Yang, Z. R. & Yang, R. Z. Facile synthesis and glorious electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen discount and evolution response. J. Mater. Chem. A 1, 12170–12177 (2013).
Google Scholar
Chen, R., Wang, H. Y., Miao, J. W., Yang, H. B. & Liu, B. A versatile high-performanceoxygenevolution electrode with three-dimensional NiCo2O4 core-shellnanowires. Nano Vitality 11, 333–340 (2015).
Google Scholar
Su, Y. Z. et al. NiCo2O4/C ready by One-step Intermittent Microwave Heating Technique for Oxygen Evolution Response in Water Splitter. J. Alloys Compd. 617, 115–119 (2014).
Google Scholar
Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution response (OER) on Ru, Ir and Pt catalysts: A comparative examine of nanoparticles and bulk supplies. ACS Catal. 2, 1765–1772 (2012).
Google Scholar
Cheng, Y., Shen, P. Okay. & Jiang, S. P. NiOx nanoparticles supported on polyethylenimine functionalized CNTs as environment friendly electrocatalysts for supercapacitor and oxygen evolution response. Int. J. Hydrogen Vitality 39, 20662–20670 (2014).
Google Scholar
Li, B. B. et al. MoO2–CoO coupled with a macroporous carbon hybrid electrocatalyst for extremely environment friendly oxygen evolution. Nanoscale 7, 16704–16714 (2015).
Google Scholar
Tang, H. L. et al. Enhancedsupercapacitiveperformance on TiO2@C coaxialnano-rodarraythrough a bio-inspiredapproach. Nano Vitality 15, 75–82 (2015).
Google Scholar
Li, Z. S., Li, Y. Y., Jiang, S. P., He, G. Q. & Shen, P. Okay. Novel graphene-like nanosheet supported extremely energetic electrocatalysts with ultralow Pt loadings for oxygen discount response. J. Mater. Chem. A 2, 16898–16904 (2014).
Google Scholar
Chen, S., Duan, J. J., Han, W. & Qiao, S. Z. A Graphene–MnO2 framework as a brand new era of three-dimensional oxygen evolution promoter. Chem. Commun. 50, 207–209 (2014).
Google Scholar
Zhao, Y. F. et al. Porous graphene wrapped CoO nanoparticles for extremely environment friendly oxygen evolution. J. Mater. Chem. A 3, 5402–5408 (2015).
Google Scholar
Geng, J., Kuai, L., Kan, E. J., Wang, Q. & Geng, B. Y. Valuable-metal-free Co–Fe–O/rGO synergetic electrocatalysts for oxygen evolution response by a facile hydrothermal route. ChemSusChem 8, 659–664 (2015).
Google Scholar
Lengthy, X. et al. A strongly coupled graphene and FeNi double hydroxide hybrid as a superb electrocatalyst for the oxygen evolution response. Angew. Chem. Int. Ed. 53, 7584–7588 (2014).
Google Scholar
Chen, S., Duan, J. J., Jaroniec, M. & Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for extremely environment friendly oxygen evolution. Angew. Chem. Int. Ed. 52, 13567–13570 (2013).
Google Scholar
Chen, S. & Qiao, S. Z. Hierarchically porous nitrogen-doped graphene NiCo2O4 hybrid paper as a complicated electrocatalytic water-splitting materials. Acs Nano 7, 10190–10196 (2013).
Google Scholar
Lee, D. U., Kim, B. J. & Chen, Z. W. One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen discount and evolution actions as an environment friendly bi-functional electrocatalyst. J. Mater. Chem. A 1, 4754–4762 (2013).
Google Scholar
Gao, Z., Yang, W. L., Wang, J., Track, N. N. & Li, X. D. Versatile all-solid-state hierarchical NiCo2O4/porous graphene paper uneven supercapacitors with an distinctive mixture of electrochemical properties. Nano Vitality 13, 306–317 (2015).
Google Scholar
Li, Y. Y., Li, Z. S. & Shen, P. Okay. Simultaneous formation of ultrahigh floor space and three-dimensional hierarchical porous graphene-like networks for quick and extremely secure supercapacitors. Adv. Mater. 25, 2474–2480 (2013).
Google Scholar
Li, Y. Y., Zhang, H. Y. & Shen, P. Okay. Ultrasmall metallic oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Vitality 13, 563–572 (2015).
Google Scholar
Li, Y. Y., Zhang, Q. W., Zhu, J. L., Wei, X. L. & Shen, P. Okay. A particularly secure MnO2 anode included with 3D porous graphene-like networks for lithium-ion batteries. J. Mater. Chem. A 2, 3163–3168 (2014).
Google Scholar
Han, X. P. et al. Hydrogenated uniform Pt clusters supported on porous CaMnO3 as a bifunctional electrocatalyst for enhanced oxygen discount and evolution. Adv. Mater. 26, 2047–2051 (2014).
Google Scholar
Li, Z. Y., Liu, Z. L., Liang, J. C., Xu, C. W. & Lu, X. H. Facile synthesis of Pd-Mn3O4/C as high-efficient electrocatalyst for oxygen evolution response. J. Mater. Chem. A 2, 18236–18240 (2014).
Google Scholar
Berenguer, R., Sieben, J. M., Quijada, C. & Morallón, E. Pt- and Ru-doped SnO2−Sb anodes with excessive stability in alkaline medium. ACS Appl. Mater. Interfaces 6, 22778–22789 (2014).
Google Scholar
Zhuang, Z. B., Sheng, W. C. & Yan, Y. S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic exercise for oxygen evolution response. Adv. Mater. 26, 3950–3955 (2014).
Google Scholar
Walton, A. S. et al. Interface managed oxidation states in layered cobalt oxide nanoislands on gold. Acs Nano 9, 2445–2453 (2015).
Google Scholar
Yeo, B. S. & Bell, A. T. Enhanced exercise of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011).
Google Scholar
Zhang, Y., Cui, B., Qin, Z. T., Lin, H. & Li, J. B. Hierarchical wreath-like Au–Co(OH)2 microclusters for water oxidation at impartial pH. Nanoscale 5, 6826–6833 (2013).
Google Scholar
Kuo, C. H. et al. Understanding the function of gold nanoparticles in enhancing the catalytic exercise of manganese oxides in water oxidation reactions. Angew. Chem. Int. Ed. 54, 2345–2350 (2015).
Google Scholar
Gorlin, Y. et al. Understanding interactions between manganese oxide and gold. That result in enhanced exercise for electrocatalytic water oxidation. J. Am. Chem. Soc. 136, 4920–4926 (2014).
Google Scholar
Liu, X. J., Liu, J. F., Li, Y. P., Li, Y. J. & Solar, X. P. Au/NiCo2O4 arrays with excessive exercise for water oxidation. ChemCatChem 6, 2501–2506 (2014).
Gao, M. R. et al. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for environment friendly water oxidation. Acs Nano 8, 3970–3978 (2014).
Google Scholar
Hassan, S., Suzuki, M., Mori, S. & El-Moneim, A. A. MnO2/carbon nanowalls composite electrode for supercapacitor software. J. Energy Sources 249, 21–27 (2014).
Google Scholar
Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. & Pöschl, U. Raman microspectroscopy of soot and associated carbonaceous supplies: Spectral evaluation and structural info. Carbon 43, 1731–1742 (2005).
Google Scholar
Zhu, J. L., Jiang, S. P., Wang, R. H., Shi, Okay. Y. & Shen, P. Okay. One-pot synthesis of a nitrogen and phosphorusdual-doped carbon nanotube array as a extremely efficient electrocatalyst for the oxygen discount response. J. Mater. Chem. A 2, 15448–15453 (2014).
Google Scholar
Park, E. D. & Lee, J. S. Results of pretreatment circumstances on CO oxidation over supported Au catalysts. J. Catal. 186, 1–11 (1999).
Google Scholar
Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).
Google Scholar
Casella, I. G., Guascito, M. R. & Sannazzaro, M. G. Voltammetric and XPS investigations of nickel hydroxide electrochemically dispersed on gold floor electrodes. J. Electroanal. Chem. 462, 202–210 (1999).
Google Scholar
Yeo, B. S. & Bell, A. T. In situ Raman examine of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C 116, 8394–8400 (2012).
Google Scholar