Home Hydroelectric EnergyHarnessing Nature’s Fury: Evaluating Extreme Weather’s Influence on China’s Green Energy Triad

Harnessing Nature’s Fury: Evaluating Extreme Weather’s Influence on China’s Green Energy Triad

by Marvin Brant
0 comments
Quantifying the impact of extreme weather on chinas hydropower–wind–solar renewable - Harnessing Nature's Fury: Evaluating Extreme Weather's Influence on China's Green Energy Triad

  • Liu, Z. & He, X. Balancing-focused hydropower management renders the clean energy transition more economical while also enhancing water security. Nat. Water 1, 778–789 (2023).

    Google Scholar 

  • Barrett, J. et al. Options for reducing energy demand to achieve zero-emission goals in the United Kingdom. Nat. Energy 7, 726–735 (2022).

    Google Scholar 

  • Sterl, S. et al. Intelligent renewable electricity portfolios in West Africa. Nat. Sustain. 3, 710–719 (2020).

    Google Scholar 

  • Mengke, L. et al. Extended multi-objective optimal scheduling for extensive hydro-wind-solar complementary systems while considering short-term peak-shaving requirements. Energy Convers. Manag. 301, 118063 (2024).

    Google Scholar 

  • Xi, J. Address at the general discussion of the 76th session of the United Nations General Assembly. United Nations, https://www.gov.cn/xinwen/2021-09/22/content_5638596.htm (2021).

  • Wang, Y. et al. Accelerating the transition towards photovoltaic and wind energy in China. Nature 619, 761–767 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, X. et al. Overcoming the difficult-to-eliminate bottleneck in China’s pursuit of carbon neutrality with clean hydrogen. Nat. Energy 7, 955–965 (2022).

    CAS 

    Google Scholar 

  • Statistical Data of the National Power Industry in 2023 (National Energy Administration, 2024); https://www.nea.gov.cn/2024-01/26/c_1310762246.htm

  • Research on China’s 2030 Energy and Electricity Development Plan and Outlook for 2060 (Global Energy Interconnection Development and Cooperation Organization, 2021); http://www.chinapower.com.cn/tynfd/zcdt/20210320/59388.html

  • Liu, L. et al. Impacts of climate change on planned supply–demand alignment in global wind and solar energy systems. Nat. Energy 8, 870–880 (2023).

    Google Scholar 

  • Martinez, A. & Iglesias, G. Global wind energy resources diminish under climate change. Energy 288, 129765 (2024).

    Google Scholar 

  • Pryor, S. C. et al. Effects of climate change on wind power generation. Nat. Rev. Earth Environ. 1, 627–643 (2020).

    Google Scholar 

  • Heptonstall, P. J. & Gross, R. J. K. A comprehensive review of the expenses and consequences of integrating variable renewables into electricity grids. Nat. Energy 6, 72–83 (2021).

    Google Scholar 

  • Northeast China, Making Every Effort to Ensure the Safety of the Power Grid (Northeast Branch of State Grid Corporation of China, 2021); http://www.ne.sgcc.com.cn/dbdwww/zxzx/mtjj/202111/t20211112_55676.htm

  • Why Is Sichuan, a Major Hydropower Province, Facing Power Shortages? (People’s Government of Sichuan Province, 2022); https://www.sc.gov.cn/10462/10464/13722/2022/8/18/a041da76a6cd45b79b9f39d89b06187d.shtml

  • Getirana, A., Libonati, R. & Cataldi, M. Brazil is facing a water crisis—it necessitates a drought strategy. Nature 600, 218–220 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • System Event Report South Australia, 8 February 2017 (Australia Energy Market Operator, 2017); http://pfbach.dk/firma_pfb/references/aemo_system_event_report_SA_8_feb_2017.pdf

  • Busby, J. W. et al. Cascading risks: Analyzing the 2021 winter blackout in Texas. Energy Research & Social Science 77, 102106 (2021).

    Google Scholar 

  • Preliminary Root Cause Analysis Mid-August 2020 Heat Storm (California ISO, 2020)

  • Jeffrey, A. et al. Broadened energy system modeling to encompass extreme weather risks and its application to hurricane incidents in Puerto Rico. Nat. Energy 6, 240–249 (2021).

    Google Scholar 

  • Panteli, M. & Mancarella, P. Effect of severe weather and climate change on the robustness of power systems: Consequences and potential mitigation approaches. Electr. Power Syst. Res. 127, 259–270 (2015).

    Google Scholar 

  • van der Most, L. et al. Severe events in the European renewable energy system: verification of a modeling framework for estimating renewable electricity generation and consumption based on meteorological data. Renew. Sustain. Energy Rev. 170, 112987 (2022).

    Google Scholar 

  • van der Wiel, K. et al. Climatic conditions resulting in extremely low variable renewable energy generation and notably high energy shortages. Renew. Sustain. Energy Rev. 111, 261–275 (2019).

    Google Scholar 

  • Perera, A. T. D. et al. Measuring the consequences of climate change and severe climatic occurrences on energy systems. Nat. Energy 5, 150–159 (2020).

    Google Scholar 

  • Höltinger, S. et al. The effect of climatic extreme occurrences on the viability of fully renewable power systems: an illustrative case for Sweden. Energy 178, 695–713 (2019).

    Google Scholar 

  • Nik, V. M. Simplifying energy simulations for future climate—integrating standard and extreme weather data sets derived from regional climate models (RCMs). Appl. Energy 177, 204–226 (2016).

    Google Scholar 

  • Zhang, Y. et al. Evaluation of climate change effects on the hydro-wind-solar energy supply system. Renew. Sustain. Energy Rev. 162, 112480 (2022).

    Google Scholar 

  • Gonzalez, J. M. et al. Creating varied renewable energy systems to optimize multisector performance. Nat. Sustain. 6, 415–427 (2023).

    Google Scholar 

  • Shen, J. et al. Renovation of pumped-storage for grid-scale, extended-duration energy storage. Nat. Rev. Electr. Eng. 2, 79–80 (2025).

    Google Scholar 

  • Guerra, O. J. Advancing beyond short-duration energy storage. Nat. Energy 6, 460–461 (2021).

    Google Scholar 

  • China Electric Power Statistical Yearbook 2020 (China Electricity Council, 2020)

  • You may also like