Kikstra, J. S., Mastrucci, A., Min, J., Riahi, Okay. & Rao, N. D. Respectable residing gaps and vitality wants all over the world. Environ. Res. Lett. 16, 095006 (2021).
Akintande, O. J., Olubusoye, O. E., Adenikinju, A. F. & Olanrewaju, B. T. Modeling the determinants of renewable vitality consumption: proof from the 5 most populous nations in Africa. Vitality 206, 117992 (2020).
Africa Vitality Outlook 2022: World Vitality Outlook Particular Report (IEA, 2022).
Renewable Energy Technology Prices in 2022 (IRENA, 2023).
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, Okay. A worldwide growth in hydropower dam development. Aquat. Sci. 77, 161–170 (2015).
Gernaat, D. E., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. Excessive-resolution evaluation of worldwide technical and financial hydropower potential. Nat. Vitality 2, 821–828 (2017).
Sterl, S. et al. A spatiotemporal atlas of hydropower in Africa for vitality modelling functions. Open Res. Eur. 1, 29 (2022).
Llamosas, C. & Sovacool, B. Okay. The way forward for hydropower? A scientific evaluation of the drivers, advantages and governance dynamics of transboundary dams. Renew. Maintain. Vitality Rev. 137, 110495 (2021).
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Google Scholar
Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).
Zarfl, C. et al. Future giant hydropower dams influence world freshwater megafauna. Sci. Rep. 9, 18531 (2019).
Google Scholar
Barbarossa, V. et al. Impacts of present and future giant dams on the geographic vary connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).
Google Scholar
Dias, M. S. et al. Anthropogenic stressors and riverine fish extinctions. Ecol. Indic. 79, 37–46 (2017).
Tickner, D. et al. Bending the curve of worldwide freshwater biodiversity loss: an emergency restoration plan. BioScience 70, 330–342 (2020).
Schmitt, R. J., Bizzi, S., Castelletti, A. & Kondolf, G. Improved trade-offs of hydropower and sand connectivity by strategic dam planning within the Mekong. Nat. Maintain. 1, 96–104 (2018).
Schmitt, R. J. P., Bizzi, S., Castelletti, A., Opperman, J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping reveals limits for sustainable hydropower within the Mekong. Sci. Adv. 5 (2019).
Schmitt, R. J. et al. Strategic basin and delta planning will increase the resilience of the Mekong Delta underneath future uncertainty. Proc. Natl Acad. Sci. USA 118, e2026127118 (2021).
Google Scholar
Kondolf, G. et al. Save the Mekong Delta from drowning. Science 376, 583–585 (2022).
Google Scholar
Winemiller, Okay. O. et al. Balancing hydropower and biodiversity within the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).
Google Scholar
Chowdhury, A. Okay. et al. Hydropower growth in eco-sensitive river basins underneath world vitality–financial change. Nat. Maintain. 7, 213–222 (2024).
Hertwich, E. G. Addressing biogenic greenhouse fuel emissions from hydropower in LCA. Environ. Sci. Technol. 47, 9604–9611 (2013).
Google Scholar
Deemer, B. R. et al. Greenhouse fuel emissions from reservoir water surfaces: a brand new world synthesis. BioScience 66, 949–964 (2016).
Prairie, Y. T. et al. Greenhouse fuel emissions from freshwater reservoirs: what does the ambiance see? Ecosystems 21, 1058–1071 (2018).
Google Scholar
Calamita, E. et al. Unaccounted CO2 leaks downstream of a big tropical hydroelectric reservoir. Proc. Natl Acad. Sci. USA 118, e2026004118 (2021).
Google Scholar
Harrison, J. A., Prairie, Y. T., Mercier-Blais, S. & Soued, C. 12 months-2020 world distribution and pathways of reservoir methane and carbon dioxide emissions based on the greenhouse fuel from reservoirs (G-res) mannequin. Glob. Biogeochem. Cycles 35, e2020GB006888 (2021).
Google Scholar
Soued, C., Harrison, J. A., Mercier-Blais, S. & Prairie, Y. T. Reservoir CO2 and CH4 emissions and their local weather influence over the interval 1900–2060. Nat. Geosci. 15, 700–705 (2022).
Google Scholar
Ou, Y. et al. Position of non-CO2 greenhouse fuel emissions in limiting world warming. One Earth 5, 1312–1315 (2022).
Haegel, N. M. et al. Terawatt-scale photovoltaics: rework world vitality. Science 364, 836–838 (2019).
Google Scholar
Veers, P. et al. Grand challenges within the science of wind vitality. Science 366, eaau2027 (2019).
Google Scholar
Meng, J., Approach, R., Verdolini, E. & Diaz Anadon, L. Evaluating professional elicitation and model-based probabilistic know-how price forecasts for the vitality transition. Proc. Natl Acad. Sci. USA 118, e1917165118 (2021).
Google Scholar
Chowdhury, A. Okay. et al. Enabling a low-carbon electrical energy system for Southern Africa. Joule 6, 1826–1844 (2022).
Carlino, A. et al. Declining price of renewables and local weather change curb the necessity for African hydropower growth. Science 381, eadf5848 (2023).
Google Scholar
Almeida, R. M. et al. Strategic planning of hydropower improvement: balancing advantages and socioenvironmental prices. Curr. Opin. Environ. Maintain. 56, 101175 (2022).
Almeida, R. M. et al. Lowering greenhouse fuel emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281 (2019).
Schmitt, R. J., Kittner, N., Kondolf, G. M. & Kammen, D. M. Joint strategic vitality and river basin planning to scale back dam impacts on rivers in Myanmar. Environ. Res. Lett. 16, 054054 (2021).
Google Scholar
Flecker, A. S. et al. Lowering antagonistic impacts of Amazon hydropower growth. Science 375, 753–760 (2022).
Google Scholar
Opperman, J. J. et al. Balancing renewable vitality and river sources by shifting from particular person assessments of hydropower tasks to vitality system planning. Entrance. Environ. Sci. 10, 2410 (2023).
Siala, Okay., Chowdhury, A. Okay., Dang, T. D. & Galelli, S. Photo voltaic vitality and regional coordination as a possible various to giant hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).
Google Scholar
Gonzalez, J. M. et al. Designing diversified renewable vitality techniques to stability multisector efficiency. Nat. Maintain. 6, 415–427 (2023).
Neumann, F. & Brown, T. The near-optimal possible house of a renewable energy system mannequin. Electr. Energy Syst. Res. 190, 106690 (2021).
Howells, M. et al. OSeMOSYS: the Open Supply Vitality Modeling System: an introduction to its ethos, construction and improvement. Vitality Coverage 39, 5850–5870 (2011).
Taliotis, C. et al. An indicative evaluation of funding alternatives within the African electrical energy provide sector—utilizing TEMBA (The Electrical energy Mannequin Base for Africa). Vitality Maintain. Dev. 31, 50–66 (2016).
Pappis, I. et al. Vitality Projections for African International locations (JRC, 2019).
Pappis, I. et al. The consequences of local weather change mitigation methods on the vitality system of Africa and its related water footprint. Environ. Res. Lett. 17, 044048 (2022).
Chawanda, C. J., Nkwasa, A., Thiery, W. & van Griensven, A. Mixed impacts of local weather and land-use change on future water sources in Africa. Hydrol. Earth Syst. Sci. 28, 117–138 (2024).
Frieler, Okay. et al. Assessing the impacts of 1.5 C world warming—simulation protocol of the Inter-Sectoral Influence Mannequin Intercomparison Mission (ISIMIP2b). Geosci. Mannequin Dev. 10, 4321–4345 (2017).
Riahi, Okay. et al. The Shared Socioeconomic Pathways and their vitality, land use, and greenhouse fuel emissions implications: an outline. Glob. Environ. Change 42, 153–168 (2017).
Grill, G., Dallaire, C. O., Chouinard, E. F., Sindorf, N. & Lehner, B. Improvement of latest indicators to judge river fragmentation and circulation regulation at giant scales: a case examine for the Mekong River Basin. Ecol. Indic. 45, 148–159 (2014).
Grill, G. et al. An index-based framework for assessing patterns and traits in river fragmentation and circulation regulation by world dams at a number of scales. Environ. Res. Lett. 10, 015001 (2015).
Jager, H. I. et al. Getting misplaced monitoring the carbon footprint of hydropower. Renew. Maintain. Vitality Rev. 162, 112408 (2022).
Google Scholar
Grochowicz, A., van Greevenbroek, Okay., Benth, F. E. & Zeyringer, M. Intersecting near-optimal areas: European energy techniques with extra resilience to climate variability. Vitality Econ. 106496, 106496 (2023).
Rheinheimer, D. E., Tarroja, B., Rallings, A. M., Willis, A. D. & Viers, J. H. Hydropower illustration in water and vitality system fashions: a evaluation of divergences and name for reconciliation. Environ. Res. Infrastruct. Maintain. 3, 012001 (2023).
Schmitt, R. J., Kittner, N., Kondolf, G. M. & Kammen, D. M. Deploy numerous renewables to save lots of tropical rivers. Nature 569, 330–332 (2019).
Google Scholar
Hatchard, S., Schmitt, R. J., Pianosi, F., Savage, J. & Bates, P. Strategic siting and design of dams minimizes impacts on seasonal floodplain inundation. Environ. Res. Lett. 18, 084011 (2023).
Allen, G. H. & Pavelsky, T. M. World extent of rivers and streams. Science 361, 585–588 (2018).
Google Scholar
Mayer, A., Castro-Diaz, L., Lopez, M. C., Leturcq, G. & Moran, E. F. Is hydropower value it? Exploring Amazonian resettlement, human improvement and environmental prices with the Belo Monte undertaking in Brazil. Vitality Res. Soc. Sci. 78, 102129 (2021).
Trotter, P. A., Maconachie, R. & McManus, M. C. Photo voltaic vitality’s potential to mitigate political dangers: the case of an optimised Africa-wide community. Vitality Coverage 117, 108–126 (2018).
Sterl, S. et al. Good renewable electrical energy portfolios in West Africa. Nat. Maintain. 3, 710–719 (2020).
Basheer, M. et al. Cooperative adaptive administration of the Nile River with local weather and socio-economic uncertainties. Nat. Clim. Change 13, 48–57 (2023).
Arnold, W., Salazar, J. Z., Carlino, A., Giuliani, M. & Castelletti, A. Operations eclipse sequencing in multipurpose dam planning. Earth’s Future 11, e2022EF003186 (2023).
Liu, Z. & He, X. Balancing-oriented hydropower operation makes the clear vitality transition extra inexpensive and concurrently boosts water safety. Nat. Water 1, 778–789 (2023).
Brown, C., Ghile, Y., Laverty, M. & Li, Okay. Resolution scaling: linking bottom-up vulnerability evaluation with local weather projections within the water sector. Water Resour. Res. 48 (2012).
Schmitt, R. J., Rosa, L. & Day by day, G. C. World growth of sustainable irrigation restricted by water storage. Proc. Natl Acad. Sci. USA 119, e2214291119 (2022).
Google Scholar
Conway, D., Dalin, C., Landman, W. A. & Osborn, T. J. Hydropower plans in Jap and Southern Africa enhance threat of concurrent climate-related electrical energy provide disruption. Nat. Vitality 2, 946–953 (2017).
Wu, G. C. et al. Strategic siting and regional grid interconnections key to low-carbon futures in African international locations. Proc. Natl Acad. Sci. USA 114, E3004–E3012 (2017).
Google Scholar
Wu, G. C. et al. Avoiding ecosystem and social impacts of hydropower, wind, and photo voltaic in Southern Africa’s low-carbon electrical energy system. Nat. Commun. 15, 1083 (2024).
Google Scholar
Sovacool, B. Okay., Gilbert, A. & Nugent, D. A global comparative evaluation of development price overruns for electrical energy infrastructure. Vitality Res. Soc. Sci. 3, 152–160 (2014).
Deshmukh, R., Mileva, A. & Wu, G. Renewable vitality options to mega hydropower: a case examine of Inga 3 for Southern Africa. Environ. Res. Lett. 13, 064020 (2018).
Barnes, T., Shivakumar, A., Brinkerink, M. & Niet, T. OSeMOSYS World, an open-source, open knowledge world electrical energy system mannequin generator. Sci. Information 9, 623 (2022).
Lehner, B. & Grill, G. World river hydrography and community routing: baseline knowledge and new approaches to check the world’s giant river techniques. Hydrol. Course of. 27, 2171–2186 (2013).
Allen, P. M., Arnold, J. C. & Byars, B. W. Downstream channel geometry to be used in planning-level fashions 1. J. Am. Water Resour. Assoc. 30, 663–671 (1994).
QGIS Geographic Data System (QGIS Affiliation, 2024).
Hagberg, A., Swart, P. & Schult, D. Exploring Community Construction, Dynamics, and Operate Utilizing NetworkX (OSTI, 2008).
Life Cycle Evaluation Harmonization (NREL, 2021); https://www.nrel.gov/evaluation/life-cycle-assessment.html
O’Connor, P. et al. Hydropower Imaginative and prescient: A New Chapter for America’s 1st Renewable Electrical energy Supply (US Division of Vitality, 2016).
Pehl, M. et al. Understanding future emissions from low-carbon energy techniques by integration of life-cycle evaluation and built-in vitality modelling. Nat. Vitality 2, 939–945 (2017).
Google Scholar
Lehner, B. et al. Excessive-resolution mapping of the world’s reservoirs and dams for sustainable river-flow administration. Entrance. Ecol. Environ. 9, 494–502 (2011).
Bartos, M. pysheds: easy and quick watershed delineation in Python. GitHub https://github.com/mdbartos/pysheds (2020).
Prairie, Y. T. et al. A brand new modelling framework to evaluate biogenic GHG emissions from reservoirs: the G-res software. Environ. Mannequin. Softw. 143, 105117 (2021).
Hadka, D. & Reed, P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21, 231–259 (2013).
Pappis, I., Sridharan, V., Usher, W. & Howells, M. JRC-TEMBA—African decarbonisation pathways. Zenodo https://doi.org/10.5281/zenodo.3521841 (2019).
Carlino, A. Information in assist of ‘Declining price of renewables and local weather change curb the necessity for African hydropower growth’. Zenodo https://doi.org/10.5281/zenodo.7931050 (2022).
Carlino, A., Schmitt, R., Clark, A. & Castelletti, A. Information and code in assist of ‘Rethinking vitality planning to mitigate environmental and climatic impacts of future African hydropower’. Zenodo https://doi.org/10.5281/zenodo.8360437 (2023).