Home Hydroelectric EnergyRethinking vitality planning to mitigate the impacts of African hydropower

Rethinking vitality planning to mitigate the impacts of African hydropower

by Marvin Brant
0 comments
Rethinking energy planning to mitigate the impacts of african hydropower - Rethinking vitality planning to mitigate the impacts of African hydropower

  • Kikstra, J. S., Mastrucci, A., Min, J., Riahi, Okay. & Rao, N. D. Respectable residing gaps and vitality wants all over the world. Environ. Res. Lett. 16, 095006 (2021).

    Google Scholar 

  • Akintande, O. J., Olubusoye, O. E., Adenikinju, A. F. & Olanrewaju, B. T. Modeling the determinants of renewable vitality consumption: proof from the 5 most populous nations in Africa. Vitality 206, 117992 (2020).

    Google Scholar 

  • Africa Vitality Outlook 2022: World Vitality Outlook Particular Report (IEA, 2022).

  • Renewable Energy Technology Prices in 2022 (IRENA, 2023).

  • Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, Okay. A worldwide growth in hydropower dam development. Aquat. Sci. 77, 161–170 (2015).

    Google Scholar 

  • Gernaat, D. E., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. Excessive-resolution evaluation of worldwide technical and financial hydropower potential. Nat. Vitality 2, 821–828 (2017).

    Google Scholar 

  • Sterl, S. et al. A spatiotemporal atlas of hydropower in Africa for vitality modelling functions. Open Res. Eur. 1, 29 (2022).

    Google Scholar 

  • Llamosas, C. & Sovacool, B. Okay. The way forward for hydropower? A scientific evaluation of the drivers, advantages and governance dynamics of transboundary dams. Renew. Maintain. Vitality Rev. 137, 110495 (2021).

    Google Scholar 

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS 

    Google Scholar 

  • Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).

    Google Scholar 

  • Zarfl, C. et al. Future giant hydropower dams influence world freshwater megafauna. Sci. Rep. 9, 18531 (2019).

    CAS 

    Google Scholar 

  • Barbarossa, V. et al. Impacts of present and future giant dams on the geographic vary connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).

    CAS 

    Google Scholar 

  • Dias, M. S. et al. Anthropogenic stressors and riverine fish extinctions. Ecol. Indic. 79, 37–46 (2017).

    Google Scholar 

  • Tickner, D. et al. Bending the curve of worldwide freshwater biodiversity loss: an emergency restoration plan. BioScience 70, 330–342 (2020).

    Google Scholar 

  • Schmitt, R. J., Bizzi, S., Castelletti, A. & Kondolf, G. Improved trade-offs of hydropower and sand connectivity by strategic dam planning within the Mekong. Nat. Maintain. 1, 96–104 (2018).

    Google Scholar 

  • Schmitt, R. J. P., Bizzi, S., Castelletti, A., Opperman, J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping reveals limits for sustainable hydropower within the Mekong. Sci. Adv. 5 (2019).

  • Schmitt, R. J. et al. Strategic basin and delta planning will increase the resilience of the Mekong Delta underneath future uncertainty. Proc. Natl Acad. Sci. USA 118, e2026127118 (2021).

    CAS 

    Google Scholar 

  • Kondolf, G. et al. Save the Mekong Delta from drowning. Science 376, 583–585 (2022).

    CAS 

    Google Scholar 

  • Winemiller, Okay. O. et al. Balancing hydropower and biodiversity within the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS 

    Google Scholar 

  • Chowdhury, A. Okay. et al. Hydropower growth in eco-sensitive river basins underneath world vitality–financial change. Nat. Maintain. 7, 213–222 (2024).

    Google Scholar 

  • Hertwich, E. G. Addressing biogenic greenhouse fuel emissions from hydropower in LCA. Environ. Sci. Technol. 47, 9604–9611 (2013).

    CAS 

    Google Scholar 

  • Deemer, B. R. et al. Greenhouse fuel emissions from reservoir water surfaces: a brand new world synthesis. BioScience 66, 949–964 (2016).

    Google Scholar 

  • Prairie, Y. T. et al. Greenhouse fuel emissions from freshwater reservoirs: what does the ambiance see? Ecosystems 21, 1058–1071 (2018).

    CAS 

    Google Scholar 

  • Calamita, E. et al. Unaccounted CO2 leaks downstream of a big tropical hydroelectric reservoir. Proc. Natl Acad. Sci. USA 118, e2026004118 (2021).

    CAS 

    Google Scholar 

  • Harrison, J. A., Prairie, Y. T., Mercier-Blais, S. & Soued, C. 12 months-2020 world distribution and pathways of reservoir methane and carbon dioxide emissions based on the greenhouse fuel from reservoirs (G-res) mannequin. Glob. Biogeochem. Cycles 35, e2020GB006888 (2021).

    CAS 

    Google Scholar 

  • Soued, C., Harrison, J. A., Mercier-Blais, S. & Prairie, Y. T. Reservoir CO2 and CH4 emissions and their local weather influence over the interval 1900–2060. Nat. Geosci. 15, 700–705 (2022).

    CAS 

    Google Scholar 

  • Ou, Y. et al. Position of non-CO2 greenhouse fuel emissions in limiting world warming. One Earth 5, 1312–1315 (2022).

    Google Scholar 

  • Haegel, N. M. et al. Terawatt-scale photovoltaics: rework world vitality. Science 364, 836–838 (2019).

    CAS 

    Google Scholar 

  • Veers, P. et al. Grand challenges within the science of wind vitality. Science 366, eaau2027 (2019).

    CAS 

    Google Scholar 

  • Meng, J., Approach, R., Verdolini, E. & Diaz Anadon, L. Evaluating professional elicitation and model-based probabilistic know-how price forecasts for the vitality transition. Proc. Natl Acad. Sci. USA 118, e1917165118 (2021).

    CAS 

    Google Scholar 

  • Chowdhury, A. Okay. et al. Enabling a low-carbon electrical energy system for Southern Africa. Joule 6, 1826–1844 (2022).

    Google Scholar 

  • Carlino, A. et al. Declining price of renewables and local weather change curb the necessity for African hydropower growth. Science 381, eadf5848 (2023).

    CAS 

    Google Scholar 

  • Almeida, R. M. et al. Strategic planning of hydropower improvement: balancing advantages and socioenvironmental prices. Curr. Opin. Environ. Maintain. 56, 101175 (2022).

    Google Scholar 

  • Almeida, R. M. et al. Lowering greenhouse fuel emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281 (2019).

    Google Scholar 

  • Schmitt, R. J., Kittner, N., Kondolf, G. M. & Kammen, D. M. Joint strategic vitality and river basin planning to scale back dam impacts on rivers in Myanmar. Environ. Res. Lett. 16, 054054 (2021).

    CAS 

    Google Scholar 

  • Flecker, A. S. et al. Lowering antagonistic impacts of Amazon hydropower growth. Science 375, 753–760 (2022).

    CAS 

    Google Scholar 

  • Opperman, J. J. et al. Balancing renewable vitality and river sources by shifting from particular person assessments of hydropower tasks to vitality system planning. Entrance. Environ. Sci. 10, 2410 (2023).

    Google Scholar 

  • Siala, Okay., Chowdhury, A. Okay., Dang, T. D. & Galelli, S. Photo voltaic vitality and regional coordination as a possible various to giant hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).

    CAS 

    Google Scholar 

  • Gonzalez, J. M. et al. Designing diversified renewable vitality techniques to stability multisector efficiency. Nat. Maintain. 6, 415–427 (2023).

    Google Scholar 

  • Neumann, F. & Brown, T. The near-optimal possible house of a renewable energy system mannequin. Electr. Energy Syst. Res. 190, 106690 (2021).

    Google Scholar 

  • Howells, M. et al. OSeMOSYS: the Open Supply Vitality Modeling System: an introduction to its ethos, construction and improvement. Vitality Coverage 39, 5850–5870 (2011).

    Google Scholar 

  • Taliotis, C. et al. An indicative evaluation of funding alternatives within the African electrical energy provide sector—utilizing TEMBA (The Electrical energy Mannequin Base for Africa). Vitality Maintain. Dev. 31, 50–66 (2016).

    Google Scholar 

  • Pappis, I. et al. Vitality Projections for African International locations (JRC, 2019).

  • Pappis, I. et al. The consequences of local weather change mitigation methods on the vitality system of Africa and its related water footprint. Environ. Res. Lett. 17, 044048 (2022).

    Google Scholar 

  • Chawanda, C. J., Nkwasa, A., Thiery, W. & van Griensven, A. Mixed impacts of local weather and land-use change on future water sources in Africa. Hydrol. Earth Syst. Sci. 28, 117–138 (2024).

    Google Scholar 

  • Frieler, Okay. et al. Assessing the impacts of 1.5 C world warming—simulation protocol of the Inter-Sectoral Influence Mannequin Intercomparison Mission (ISIMIP2b). Geosci. Mannequin Dev. 10, 4321–4345 (2017).

    Google Scholar 

  • Riahi, Okay. et al. The Shared Socioeconomic Pathways and their vitality, land use, and greenhouse fuel emissions implications: an outline. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • Grill, G., Dallaire, C. O., Chouinard, E. F., Sindorf, N. & Lehner, B. Improvement of latest indicators to judge river fragmentation and circulation regulation at giant scales: a case examine for the Mekong River Basin. Ecol. Indic. 45, 148–159 (2014).

    Google Scholar 

  • Grill, G. et al. An index-based framework for assessing patterns and traits in river fragmentation and circulation regulation by world dams at a number of scales. Environ. Res. Lett. 10, 015001 (2015).

    Google Scholar 

  • Jager, H. I. et al. Getting misplaced monitoring the carbon footprint of hydropower. Renew. Maintain. Vitality Rev. 162, 112408 (2022).

    CAS 

    Google Scholar 

  • Grochowicz, A., van Greevenbroek, Okay., Benth, F. E. & Zeyringer, M. Intersecting near-optimal areas: European energy techniques with extra resilience to climate variability. Vitality Econ. 106496, 106496 (2023).

    Google Scholar 

  • Rheinheimer, D. E., Tarroja, B., Rallings, A. M., Willis, A. D. & Viers, J. H. Hydropower illustration in water and vitality system fashions: a evaluation of divergences and name for reconciliation. Environ. Res. Infrastruct. Maintain. 3, 012001 (2023).

    Google Scholar 

  • Schmitt, R. J., Kittner, N., Kondolf, G. M. & Kammen, D. M. Deploy numerous renewables to save lots of tropical rivers. Nature 569, 330–332 (2019).

    CAS 

    Google Scholar 

  • Hatchard, S., Schmitt, R. J., Pianosi, F., Savage, J. & Bates, P. Strategic siting and design of dams minimizes impacts on seasonal floodplain inundation. Environ. Res. Lett. 18, 084011 (2023).

    Google Scholar 

  • Allen, G. H. & Pavelsky, T. M. World extent of rivers and streams. Science 361, 585–588 (2018).

    CAS 

    Google Scholar 

  • Mayer, A., Castro-Diaz, L., Lopez, M. C., Leturcq, G. & Moran, E. F. Is hydropower value it? Exploring Amazonian resettlement, human improvement and environmental prices with the Belo Monte undertaking in Brazil. Vitality Res. Soc. Sci. 78, 102129 (2021).

    Google Scholar 

  • Trotter, P. A., Maconachie, R. & McManus, M. C. Photo voltaic vitality’s potential to mitigate political dangers: the case of an optimised Africa-wide community. Vitality Coverage 117, 108–126 (2018).

    Google Scholar 

  • Sterl, S. et al. Good renewable electrical energy portfolios in West Africa. Nat. Maintain. 3, 710–719 (2020).

    Google Scholar 

  • Basheer, M. et al. Cooperative adaptive administration of the Nile River with local weather and socio-economic uncertainties. Nat. Clim. Change 13, 48–57 (2023).

    Google Scholar 

  • Arnold, W., Salazar, J. Z., Carlino, A., Giuliani, M. & Castelletti, A. Operations eclipse sequencing in multipurpose dam planning. Earth’s Future 11, e2022EF003186 (2023).

    Google Scholar 

  • Liu, Z. & He, X. Balancing-oriented hydropower operation makes the clear vitality transition extra inexpensive and concurrently boosts water safety. Nat. Water 1, 778–789 (2023).

    Google Scholar 

  • Brown, C., Ghile, Y., Laverty, M. & Li, Okay. Resolution scaling: linking bottom-up vulnerability evaluation with local weather projections within the water sector. Water Resour. Res. 48 (2012).

  • Schmitt, R. J., Rosa, L. & Day by day, G. C. World growth of sustainable irrigation restricted by water storage. Proc. Natl Acad. Sci. USA 119, e2214291119 (2022).

    CAS 

    Google Scholar 

  • Conway, D., Dalin, C., Landman, W. A. & Osborn, T. J. Hydropower plans in Jap and Southern Africa enhance threat of concurrent climate-related electrical energy provide disruption. Nat. Vitality 2, 946–953 (2017).

    Google Scholar 

  • Wu, G. C. et al. Strategic siting and regional grid interconnections key to low-carbon futures in African international locations. Proc. Natl Acad. Sci. USA 114, E3004–E3012 (2017).

    CAS 

    Google Scholar 

  • Wu, G. C. et al. Avoiding ecosystem and social impacts of hydropower, wind, and photo voltaic in Southern Africa’s low-carbon electrical energy system. Nat. Commun. 15, 1083 (2024).

    CAS 

    Google Scholar 

  • Sovacool, B. Okay., Gilbert, A. & Nugent, D. A global comparative evaluation of development price overruns for electrical energy infrastructure. Vitality Res. Soc. Sci. 3, 152–160 (2014).

    Google Scholar 

  • Deshmukh, R., Mileva, A. & Wu, G. Renewable vitality options to mega hydropower: a case examine of Inga 3 for Southern Africa. Environ. Res. Lett. 13, 064020 (2018).

    Google Scholar 

  • Barnes, T., Shivakumar, A., Brinkerink, M. & Niet, T. OSeMOSYS World, an open-source, open knowledge world electrical energy system mannequin generator. Sci. Information 9, 623 (2022).

    Google Scholar 

  • Lehner, B. & Grill, G. World river hydrography and community routing: baseline knowledge and new approaches to check the world’s giant river techniques. Hydrol. Course of. 27, 2171–2186 (2013).

    Google Scholar 

  • Allen, P. M., Arnold, J. C. & Byars, B. W. Downstream channel geometry to be used in planning-level fashions 1. J. Am. Water Resour. Assoc. 30, 663–671 (1994).

    Google Scholar 

  • QGIS Geographic Data System (QGIS Affiliation, 2024).

  • Hagberg, A., Swart, P. & Schult, D. Exploring Community Construction, Dynamics, and Operate Utilizing NetworkX (OSTI, 2008).

  • Life Cycle Evaluation Harmonization (NREL, 2021); https://www.nrel.gov/evaluation/life-cycle-assessment.html

  • O’Connor, P. et al. Hydropower Imaginative and prescient: A New Chapter for America’s 1st Renewable Electrical energy Supply (US Division of Vitality, 2016).

  • Pehl, M. et al. Understanding future emissions from low-carbon energy techniques by integration of life-cycle evaluation and built-in vitality modelling. Nat. Vitality 2, 939–945 (2017).

    CAS 

    Google Scholar 

  • Lehner, B. et al. Excessive-resolution mapping of the world’s reservoirs and dams for sustainable river-flow administration. Entrance. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  • Bartos, M. pysheds: easy and quick watershed delineation in Python. GitHub https://github.com/mdbartos/pysheds (2020).

  • Prairie, Y. T. et al. A brand new modelling framework to evaluate biogenic GHG emissions from reservoirs: the G-res software. Environ. Mannequin. Softw. 143, 105117 (2021).

    Google Scholar 

  • Hadka, D. & Reed, P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21, 231–259 (2013).

    Google Scholar 

  • Pappis, I., Sridharan, V., Usher, W. & Howells, M. JRC-TEMBA—African decarbonisation pathways. Zenodo https://doi.org/10.5281/zenodo.3521841 (2019).

  • Carlino, A. Information in assist of ‘Declining price of renewables and local weather change curb the necessity for African hydropower growth’. Zenodo https://doi.org/10.5281/zenodo.7931050 (2022).

  • Carlino, A., Schmitt, R., Clark, A. & Castelletti, A. Information and code in assist of ‘Rethinking vitality planning to mitigate environmental and climatic impacts of future African hydropower’. Zenodo https://doi.org/10.5281/zenodo.8360437 (2023).

  • You may also like