Writy.
  • Wind & Solar Energy Portal
  • Solar Energy
  • Solar Panel
  • Wind Energy
  • Wind Turbine
  • Hydroelectric Energy
  • Sea and Marine Energy
  • Solar and Wind Images
No Result
View All Result
Writy.
  • Wind & Solar Energy Portal
  • Solar Energy
  • Solar Panel
  • Wind Energy
  • Wind Turbine
  • Hydroelectric Energy
  • Sea and Marine Energy
  • Solar and Wind Images
No Result
View All Result
Writy.
No Result
View All Result
Rethinking energy planning to mitigate the impacts of african hydropower - Rethinking vitality planning to mitigate the impacts of African hydropower

Rethinking energy planning to mitigate the impacts of african hydropower - Rethinking vitality planning to mitigate the impacts of African hydropower

Rethinking vitality planning to mitigate the impacts of African hydropower

by Marvin Brant
April 14, 2025
in Hydroelectric Energy
0

  • Kikstra, J. S., Mastrucci, A., Min, J., Riahi, Okay. & Rao, N. D. Respectable residing gaps and vitality wants all over the world. Environ. Res. Lett. 16, 095006 (2021).

    You might also like

    Con edison on using ldes technology to help decarbonise nyc - "Revolutionizing New York: Con Edison's Journey with LDES Technology for a Greener Future"

    “Revolutionizing New York: Con Edison’s Journey with LDES Technology for a Greener Future”

    May 7, 2025
    Stability analysis of grid connected hydropower plant considering turbine nonlinearity and - Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    April 28, 2025

    Google Scholar 

  • Akintande, O. J., Olubusoye, O. E., Adenikinju, A. F. & Olanrewaju, B. T. Modeling the determinants of renewable vitality consumption: proof from the 5 most populous nations in Africa. Vitality 206, 117992 (2020).

    Google Scholar 

  • Africa Vitality Outlook 2022: World Vitality Outlook Particular Report (IEA, 2022).

  • Renewable Energy Technology Prices in 2022 (IRENA, 2023).

  • Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, Okay. A worldwide growth in hydropower dam development. Aquat. Sci. 77, 161–170 (2015).

    Google Scholar 

  • Gernaat, D. E., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. Excessive-resolution evaluation of worldwide technical and financial hydropower potential. Nat. Vitality 2, 821–828 (2017).

    Google Scholar 

  • Sterl, S. et al. A spatiotemporal atlas of hydropower in Africa for vitality modelling functions. Open Res. Eur. 1, 29 (2022).

    Google Scholar 

  • Llamosas, C. & Sovacool, B. Okay. The way forward for hydropower? A scientific evaluation of the drivers, advantages and governance dynamics of transboundary dams. Renew. Maintain. Vitality Rev. 137, 110495 (2021).

    Google Scholar 

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS 

    Google Scholar 

  • Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).

    Google Scholar 

  • Zarfl, C. et al. Future giant hydropower dams influence world freshwater megafauna. Sci. Rep. 9, 18531 (2019).

    CAS 

    Google Scholar 

  • Barbarossa, V. et al. Impacts of present and future giant dams on the geographic vary connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).

    CAS 

    Google Scholar 

  • Dias, M. S. et al. Anthropogenic stressors and riverine fish extinctions. Ecol. Indic. 79, 37–46 (2017).

    Google Scholar 

  • Tickner, D. et al. Bending the curve of worldwide freshwater biodiversity loss: an emergency restoration plan. BioScience 70, 330–342 (2020).

    Google Scholar 

  • Schmitt, R. J., Bizzi, S., Castelletti, A. & Kondolf, G. Improved trade-offs of hydropower and sand connectivity by strategic dam planning within the Mekong. Nat. Maintain. 1, 96–104 (2018).

    Google Scholar 

  • Schmitt, R. J. P., Bizzi, S., Castelletti, A., Opperman, J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping reveals limits for sustainable hydropower within the Mekong. Sci. Adv. 5 (2019).

  • Schmitt, R. J. et al. Strategic basin and delta planning will increase the resilience of the Mekong Delta underneath future uncertainty. Proc. Natl Acad. Sci. USA 118, e2026127118 (2021).

    CAS 

    Google Scholar 

  • Kondolf, G. et al. Save the Mekong Delta from drowning. Science 376, 583–585 (2022).

    CAS 

    Google Scholar 

  • Winemiller, Okay. O. et al. Balancing hydropower and biodiversity within the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS 

    Google Scholar 

  • Chowdhury, A. Okay. et al. Hydropower growth in eco-sensitive river basins underneath world vitality–financial change. Nat. Maintain. 7, 213–222 (2024).

    Google Scholar 

  • Hertwich, E. G. Addressing biogenic greenhouse fuel emissions from hydropower in LCA. Environ. Sci. Technol. 47, 9604–9611 (2013).

    CAS 

    Google Scholar 

  • Deemer, B. R. et al. Greenhouse fuel emissions from reservoir water surfaces: a brand new world synthesis. BioScience 66, 949–964 (2016).

    See also
    Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    Google Scholar 

  • Prairie, Y. T. et al. Greenhouse fuel emissions from freshwater reservoirs: what does the ambiance see? Ecosystems 21, 1058–1071 (2018).

    CAS 

    Google Scholar 

  • Calamita, E. et al. Unaccounted CO2 leaks downstream of a big tropical hydroelectric reservoir. Proc. Natl Acad. Sci. USA 118, e2026004118 (2021).

    CAS 

    Google Scholar 

  • Harrison, J. A., Prairie, Y. T., Mercier-Blais, S. & Soued, C. 12 months-2020 world distribution and pathways of reservoir methane and carbon dioxide emissions based on the greenhouse fuel from reservoirs (G-res) mannequin. Glob. Biogeochem. Cycles 35, e2020GB006888 (2021).

    CAS 

    Google Scholar 

  • Soued, C., Harrison, J. A., Mercier-Blais, S. & Prairie, Y. T. Reservoir CO2 and CH4 emissions and their local weather influence over the interval 1900–2060. Nat. Geosci. 15, 700–705 (2022).

    CAS 

    Google Scholar 

  • Ou, Y. et al. Position of non-CO2 greenhouse fuel emissions in limiting world warming. One Earth 5, 1312–1315 (2022).

    Google Scholar 

  • Haegel, N. M. et al. Terawatt-scale photovoltaics: rework world vitality. Science 364, 836–838 (2019).

    CAS 

    Google Scholar 

  • Veers, P. et al. Grand challenges within the science of wind vitality. Science 366, eaau2027 (2019).

    CAS 

    Google Scholar 

  • Meng, J., Approach, R., Verdolini, E. & Diaz Anadon, L. Evaluating professional elicitation and model-based probabilistic know-how price forecasts for the vitality transition. Proc. Natl Acad. Sci. USA 118, e1917165118 (2021).

    CAS 

    Google Scholar 

  • Chowdhury, A. Okay. et al. Enabling a low-carbon electrical energy system for Southern Africa. Joule 6, 1826–1844 (2022).

    Google Scholar 

  • Carlino, A. et al. Declining price of renewables and local weather change curb the necessity for African hydropower growth. Science 381, eadf5848 (2023).

    CAS 

    Google Scholar 

  • Almeida, R. M. et al. Strategic planning of hydropower improvement: balancing advantages and socioenvironmental prices. Curr. Opin. Environ. Maintain. 56, 101175 (2022).

    Google Scholar 

  • Almeida, R. M. et al. Lowering greenhouse fuel emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281 (2019).

    Google Scholar 

  • Schmitt, R. J., Kittner, N., Kondolf, G. M. & Kammen, D. M. Joint strategic vitality and river basin planning to scale back dam impacts on rivers in Myanmar. Environ. Res. Lett. 16, 054054 (2021).

    CAS 

    Google Scholar 

  • Flecker, A. S. et al. Lowering antagonistic impacts of Amazon hydropower growth. Science 375, 753–760 (2022).

    CAS 

    Google Scholar 

  • Opperman, J. J. et al. Balancing renewable vitality and river sources by shifting from particular person assessments of hydropower tasks to vitality system planning. Entrance. Environ. Sci. 10, 2410 (2023).

    Google Scholar 

  • Siala, Okay., Chowdhury, A. Okay., Dang, T. D. & Galelli, S. Photo voltaic vitality and regional coordination as a possible various to giant hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).

    CAS 

    Google Scholar 

  • Gonzalez, J. M. et al. Designing diversified renewable vitality techniques to stability multisector efficiency. Nat. Maintain. 6, 415–427 (2023).

    Google Scholar 

  • Neumann, F. & Brown, T. The near-optimal possible house of a renewable energy system mannequin. Electr. Energy Syst. Res. 190, 106690 (2021).

    Google Scholar 

  • Howells, M. et al. OSeMOSYS: the Open Supply Vitality Modeling System: an introduction to its ethos, construction and improvement. Vitality Coverage 39, 5850–5870 (2011).

    Google Scholar 

  • Taliotis, C. et al. An indicative evaluation of funding alternatives within the African electrical energy provide sector—utilizing TEMBA (The Electrical energy Mannequin Base for Africa). Vitality Maintain. Dev. 31, 50–66 (2016).

    Google Scholar 

    See also
    MoEWR tenders for 46 off-grid solar-plus-storage tasks

  • Pappis, I. et al. Vitality Projections for African International locations (JRC, 2019).

  • Pappis, I. et al. The consequences of local weather change mitigation methods on the vitality system of Africa and its related water footprint. Environ. Res. Lett. 17, 044048 (2022).

    Google Scholar 

  • Chawanda, C. J., Nkwasa, A., Thiery, W. & van Griensven, A. Mixed impacts of local weather and land-use change on future water sources in Africa. Hydrol. Earth Syst. Sci. 28, 117–138 (2024).

    Google Scholar 

  • Frieler, Okay. et al. Assessing the impacts of 1.5 C world warming—simulation protocol of the Inter-Sectoral Influence Mannequin Intercomparison Mission (ISIMIP2b). Geosci. Mannequin Dev. 10, 4321–4345 (2017).

    Google Scholar 

  • Riahi, Okay. et al. The Shared Socioeconomic Pathways and their vitality, land use, and greenhouse fuel emissions implications: an outline. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • Grill, G., Dallaire, C. O., Chouinard, E. F., Sindorf, N. & Lehner, B. Improvement of latest indicators to judge river fragmentation and circulation regulation at giant scales: a case examine for the Mekong River Basin. Ecol. Indic. 45, 148–159 (2014).

    Google Scholar 

  • Grill, G. et al. An index-based framework for assessing patterns and traits in river fragmentation and circulation regulation by world dams at a number of scales. Environ. Res. Lett. 10, 015001 (2015).

    Google Scholar 

  • Jager, H. I. et al. Getting misplaced monitoring the carbon footprint of hydropower. Renew. Maintain. Vitality Rev. 162, 112408 (2022).

    CAS 

    Google Scholar 

  • Grochowicz, A., van Greevenbroek, Okay., Benth, F. E. & Zeyringer, M. Intersecting near-optimal areas: European energy techniques with extra resilience to climate variability. Vitality Econ. 106496, 106496 (2023).

    Google Scholar 

  • Rheinheimer, D. E., Tarroja, B., Rallings, A. M., Willis, A. D. & Viers, J. H. Hydropower illustration in water and vitality system fashions: a evaluation of divergences and name for reconciliation. Environ. Res. Infrastruct. Maintain. 3, 012001 (2023).

    Google Scholar 

  • Schmitt, R. J., Kittner, N., Kondolf, G. M. & Kammen, D. M. Deploy numerous renewables to save lots of tropical rivers. Nature 569, 330–332 (2019).

    CAS 

    Google Scholar 

  • Hatchard, S., Schmitt, R. J., Pianosi, F., Savage, J. & Bates, P. Strategic siting and design of dams minimizes impacts on seasonal floodplain inundation. Environ. Res. Lett. 18, 084011 (2023).

    Google Scholar 

  • Allen, G. H. & Pavelsky, T. M. World extent of rivers and streams. Science 361, 585–588 (2018).

    CAS 

    Google Scholar 

  • Mayer, A., Castro-Diaz, L., Lopez, M. C., Leturcq, G. & Moran, E. F. Is hydropower value it? Exploring Amazonian resettlement, human improvement and environmental prices with the Belo Monte undertaking in Brazil. Vitality Res. Soc. Sci. 78, 102129 (2021).

    Google Scholar 

  • Trotter, P. A., Maconachie, R. & McManus, M. C. Photo voltaic vitality’s potential to mitigate political dangers: the case of an optimised Africa-wide community. Vitality Coverage 117, 108–126 (2018).

    Google Scholar 

  • Sterl, S. et al. Good renewable electrical energy portfolios in West Africa. Nat. Maintain. 3, 710–719 (2020).

    Google Scholar 

  • Basheer, M. et al. Cooperative adaptive administration of the Nile River with local weather and socio-economic uncertainties. Nat. Clim. Change 13, 48–57 (2023).

    Google Scholar 

  • Arnold, W., Salazar, J. Z., Carlino, A., Giuliani, M. & Castelletti, A. Operations eclipse sequencing in multipurpose dam planning. Earth’s Future 11, e2022EF003186 (2023).

    Google Scholar 

  • Liu, Z. & He, X. Balancing-oriented hydropower operation makes the clear vitality transition extra inexpensive and concurrently boosts water safety. Nat. Water 1, 778–789 (2023).

    See also
    "Unraveling the Dynamics: Discharge Patterns in Multi-Outlet Spillways Amidst Challenging Scenarios"

    Google Scholar 

  • Brown, C., Ghile, Y., Laverty, M. & Li, Okay. Resolution scaling: linking bottom-up vulnerability evaluation with local weather projections within the water sector. Water Resour. Res. 48 (2012).

  • Schmitt, R. J., Rosa, L. & Day by day, G. C. World growth of sustainable irrigation restricted by water storage. Proc. Natl Acad. Sci. USA 119, e2214291119 (2022).

    CAS 

    Google Scholar 

  • Conway, D., Dalin, C., Landman, W. A. & Osborn, T. J. Hydropower plans in Jap and Southern Africa enhance threat of concurrent climate-related electrical energy provide disruption. Nat. Vitality 2, 946–953 (2017).

    Google Scholar 

  • Wu, G. C. et al. Strategic siting and regional grid interconnections key to low-carbon futures in African international locations. Proc. Natl Acad. Sci. USA 114, E3004–E3012 (2017).

    CAS 

    Google Scholar 

  • Wu, G. C. et al. Avoiding ecosystem and social impacts of hydropower, wind, and photo voltaic in Southern Africa’s low-carbon electrical energy system. Nat. Commun. 15, 1083 (2024).

    CAS 

    Google Scholar 

  • Sovacool, B. Okay., Gilbert, A. & Nugent, D. A global comparative evaluation of development price overruns for electrical energy infrastructure. Vitality Res. Soc. Sci. 3, 152–160 (2014).

    Google Scholar 

  • Deshmukh, R., Mileva, A. & Wu, G. Renewable vitality options to mega hydropower: a case examine of Inga 3 for Southern Africa. Environ. Res. Lett. 13, 064020 (2018).

    Google Scholar 

  • Barnes, T., Shivakumar, A., Brinkerink, M. & Niet, T. OSeMOSYS World, an open-source, open knowledge world electrical energy system mannequin generator. Sci. Information 9, 623 (2022).

    Google Scholar 

  • Lehner, B. & Grill, G. World river hydrography and community routing: baseline knowledge and new approaches to check the world’s giant river techniques. Hydrol. Course of. 27, 2171–2186 (2013).

    Google Scholar 

  • Allen, P. M., Arnold, J. C. & Byars, B. W. Downstream channel geometry to be used in planning-level fashions 1. J. Am. Water Resour. Assoc. 30, 663–671 (1994).

    Google Scholar 

  • QGIS Geographic Data System (QGIS Affiliation, 2024).

  • Hagberg, A., Swart, P. & Schult, D. Exploring Community Construction, Dynamics, and Operate Utilizing NetworkX (OSTI, 2008).

  • Life Cycle Evaluation Harmonization (NREL, 2021); https://www.nrel.gov/evaluation/life-cycle-assessment.html

  • O’Connor, P. et al. Hydropower Imaginative and prescient: A New Chapter for America’s 1st Renewable Electrical energy Supply (US Division of Vitality, 2016).

  • Pehl, M. et al. Understanding future emissions from low-carbon energy techniques by integration of life-cycle evaluation and built-in vitality modelling. Nat. Vitality 2, 939–945 (2017).

    CAS 

    Google Scholar 

  • Lehner, B. et al. Excessive-resolution mapping of the world’s reservoirs and dams for sustainable river-flow administration. Entrance. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  • Bartos, M. pysheds: easy and quick watershed delineation in Python. GitHub https://github.com/mdbartos/pysheds (2020).

  • Prairie, Y. T. et al. A brand new modelling framework to evaluate biogenic GHG emissions from reservoirs: the G-res software. Environ. Mannequin. Softw. 143, 105117 (2021).

    Google Scholar 

  • Hadka, D. & Reed, P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21, 231–259 (2013).

    Google Scholar 

  • Pappis, I., Sridharan, V., Usher, W. & Howells, M. JRC-TEMBA—African decarbonisation pathways. Zenodo https://doi.org/10.5281/zenodo.3521841 (2019).

  • Carlino, A. Information in assist of ‘Declining price of renewables and local weather change curb the necessity for African hydropower growth’. Zenodo https://doi.org/10.5281/zenodo.7931050 (2022).

  • Carlino, A., Schmitt, R., Clark, A. & Castelletti, A. Information and code in assist of ‘Rethinking vitality planning to mitigate environmental and climatic impacts of future African hydropower’. Zenodo https://doi.org/10.5281/zenodo.8360437 (2023).

  • Marvin Brant

    Related Stories

    Con edison on using ldes technology to help decarbonise nyc - "Revolutionizing New York: Con Edison's Journey with LDES Technology for a Greener Future"

    “Revolutionizing New York: Con Edison’s Journey with LDES Technology for a Greener Future”

    by Marvin Brant
    May 7, 2025
    0

    This panel was overseen by Allison Weis, global head of storage at the market research and analysis firm Wood Mackenzie....

    Stability analysis of grid connected hydropower plant considering turbine nonlinearity and - Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    by Marvin Brant
    April 28, 2025
    0

    In this investigation, the GCHTGS primarily comprises an upstream reservoir, penstock, governor, hydro-turbine, generator, downstream reservoir, and PG, as illustrated...

    Battery power online | maximizing efficiency and profit in fleet - "Revolutionizing Fleet Charging: Unlocking Profitability and Efficiency with On-Site Batteries and Smart Energy Solutions"

    “Revolutionizing Fleet Charging: Unlocking Profitability and Efficiency with On-Site Batteries and Smart Energy Solutions”

    by Marvin Brant
    April 20, 2025
    0

    Insightful Commentary from Oren Halevi, Chief Product Officer, Driivz    April 14, 2025 | Escalating energy requirements have electricity users and...

    Quantifying the impact of extreme weather on chinas hydropower–wind–solar renewable - Harnessing Nature's Fury: Evaluating Extreme Weather's Influence on China's Green Energy Triad

    Harnessing Nature’s Fury: Evaluating Extreme Weather’s Influence on China’s Green Energy Triad

    by Marvin Brant
    April 14, 2025
    0

    Liu, Z. & He, X. Balancing-focused hydropower management renders the clean energy transition more economical while also enhancing water security....

    Next Post
    Tornades - Tornades ? - energy

    Tornades ?

    Windy

    News About Solar System And Turbine Winds

    • Privacy Policy
    • Contact Us

    © 2022-2023 | WindySolar.com

    No Result
    View All Result
    • Wind & Solar Energy Portal
    • Solar Energy
    • Solar Panel
    • Wind Energy
    • Wind Turbine
    • Hydroelectric Energy
    • Sea and Marine Energy
    • Solar and Wind Images

    © 2022-2023 | WindySolar.com