Home Hydroelectric EnergyThe albedo–native climate penalty of hydropower reservoirs

The albedo–native climate penalty of hydropower reservoirs

by Marvin Brant
0 comments

  • Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    Google Scholar 

  • Goodwin, P. et al. Pathways to 1.5 °C and a few °C warming based mostly totally on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

    Google Scholar 

  • Chu, S., Cui, Y. & Liu, N. The path within the course of sustainable vitality. Nat. Mater. 16, 16–22 (2016).

    Google Scholar 

  • Hoffert, M. I. et al. Superior know-how paths to worldwide native climate stability: vitality for a greenhouse planet. Science 298, 981–987 (2002).

    Google Scholar 

  • Yang, W. et al. Burden on hydropower objects for short-term balancing of renewable vitality strategies. Nat. Commun. 9, 2633 (2018).

    Google Scholar 

  • Jacobson, M. Z. 100% Clear, Renewable Vitality and Storage for Each little factor (Cambridge Univ. Press, 2020).

  • van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, Okay. Vitality-generation system vulnerability and adaptation to modifications in native climate and water sources. Nat. Clim. Change 6, 375–380 (2016).

    Google Scholar 

  • Turner, S. W. D., Ng, J. Y. & Galelli, S. Inspecting worldwide electrical vitality present vulnerability to native climate change using a high-fidelity hydropower dam model. Sci. Entire Environ. 590–591, 663–675 (2017).

    Google Scholar 

  • Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, Okay. A world progress in hydropower dam improvement. Aquat. Sci. 77, 161–170 (2014).

    Google Scholar 

  • Farinotti, D., Spherical, V., Huss, M., Compagno, L. & Zekollari, H. Big hydropower and water-storage potential in future glacier-free basins. Nature 575, 341–344 (2019).

    Google Scholar 

  • Wehrli, B. Native climate science: renewable nevertheless not carbon-free. Nat. Geosci. 4, 585–586 (2011).

    Google Scholar 

  • Scherer, L. & Pfister, S. Hydropower’s biogenic carbon footprint. PLoS ONE 11, e0161947 (2016).

    Google Scholar 

  • Ocko, I. B. & Hamburg, S. P. Native climate impacts of hydropower: enormous variations amongst facilities and over time. Environ. Sci. Technol. 53, 14070–14082 (2019).

    Google Scholar 

  • Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).

    Google Scholar 

  • Cogley, J. G. The albedo of water as a carry out of latitude. Mon. Local weather Rev. 107, 775–781 (1979).

    Google Scholar 

  • Cescatti, A. et al. Intercomparison of MODIS albedo retrievals and in situ measurements all through the worldwide FLUXNET neighborhood. Distant Sens. Environ. 121, 323–334 (2012).

    Google Scholar 

  • Vivid, R. M., Bogren, W., Bernier, P. & Astrup, R. Carbon-equivalent metrics for albedo modifications in land administration contexts: relevance of the time dimension. Ecol. Appl. 26, 1868–1880 (2016).

    Google Scholar 

  • Kirschbaum, M. U. F. et al. Implications of albedo modifications following afforestation on some great benefits of forests as carbon sinks. Biogeosciences 8, 3687–3696 (2011).

    Google Scholar 

  • Vivid, R. M. & Kvalevåg, M. M. Technical discover: evaluating a straightforward parameterization of radiative shortwave forcing from ground albedo change. Atmos. Chem. Phys. 13, 11169–11174 (2013).

    Google Scholar 

  • Vivid, R. M. & O’Halloran, T. L. Rising a month-to-month radiative kernel for ground albedo change from satellite tv for pc television for laptop climatologies of Earth’s shortwave radiation funds: CACK v1.0. Geosci. Model Dev. 12, 3975–3990 (2019).

    Google Scholar 

  • Projected Costs of Producing Electrical vitality (Worldwide Vitality Firm and Nuclear Vitality Firm, 2010).

  • Bala, G. et al. Combined native climate and carbon-cycle outcomes of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    Google Scholar 

  • Bonan, G. B. Forests and native climate change: native climate benefits of forests. Science 320, 1444–1449 (2008).

    Google Scholar 

  • Myhre, G., Kvalevåg, M. M. & Schaaf, C. B. Radiative forcing on account of anthropogenic vegetation change based mostly totally on MODIS ground albedo data. Geophys. Res. Lett. 32, L21410 (2005).

    Google Scholar 

  • Seneviratne, S. I. et al. Land radiative administration as contributor to regional-scale native climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    MathSciNet 

    Google Scholar 

  • Riahi, Okay. et al. The Shared Socioeconomic Pathways and their vitality, land use, and greenhouse gasoline emissions implications: a top level view. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • Rogelj, J. et al. Eventualities within the course of limiting worldwide suggest temperature improve beneath 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Google Scholar 

  • Couto, T. B. A. & Olden, J. D. World proliferation of small hydropower vegetation – science and protection. Entrance. Ecol. Environ. 16, 91–100 (2018).

    Google Scholar 

  • Ardizzon, G., Cavazzini, G. & Pavesi, G. A model new expertise of small hydro and pumped-hydro vitality vegetation: advances and future challenges. Renew. Preserve. Vitality Rev. 31, 746–761 (2014).

    Google Scholar 

  • CO2 Emissions from Gasoline Combustion (Worldwide Vitality Firm, 2016).

  • Ang, B. W. & Su, B. Carbon emission depth in electrical vitality manufacturing: a worldwide analysis. Vitality Protection 94, 56–63 (2016).

    Google Scholar 

  • Gibson, L., Wilman, E. N. & Laurance, W. F. How inexperienced is ‘inexperienced’ vitality? Tendencies Ecol. Evol. 32, 922–935 (2017).

    Google Scholar 

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Google Scholar 

  • Moran, E. F., Lopez, M. C., Moore, N., Muller, N. & Hyndman, D. W. Sustainable hydropower throughout the twenty first century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).

    Google Scholar 

  • Zarfl, C. et al. Future big hydropower dams impression worldwide freshwater megafauna. Sci. Rep. 9, 18531 (2019).

    Google Scholar 

  • Winemiller, Okay. O. et al. Balancing hydropower and biodiversity throughout the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Google Scholar 

  • Reid, A. J. et al. Rising threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Google Scholar 

  • Barbarossa, V. et al. Impacts of current and future big dams on the geographic differ connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).

    Google Scholar 

  • Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow into regulation of the world’s big river strategies. Science 308, 405–408 (2005).

    Google Scholar 

  • Johnson, P. T. J., Olden, J. D. & Vander Zanden, M. J. Dam invaders: impoundments facilitate natural invasions into freshwaters. Entrance. Ecol. Environ. 6, 357–363 (2008).

    Google Scholar 

  • Maavara, T. et al. River dam impacts on biogeochemical biking. Nat. Rev. Earth Environ. 1, 103–116 (2020).

    Google Scholar 

  • Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment present as a driver of river meandering and floodplain evolution throughout the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Google Scholar 

  • Richter, B. D. et al. Misplaced in enchancment’s shadow: the downstream human penalties of dams. Water Alter. 3, 14–42 (2010).

    Google Scholar 

  • Lehner, B. et al. Extreme-resolution mapping of the world’s reservoirs and dams for sustainable river-flow administration. Entrance. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  • World Vitality Plant Database (GPPD) (World Belongings Institute, 2018); https://datasets.wri.org/dataset/globalpowerplantdatabase

  • Schaaf, C. & Wang, Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Every day L3 World – 500m V006 (NASA EOSDIS Land Processes DAAC, 2019); https://lpdaac.usgs.gov/merchandise/mcd43a1v006/

  • Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cowl Type Yearly L3 World 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://lpdaac.usgs.gov/merchandise/mcd12q1v006/

  • NASA JPL NASA Shuttle Radar Topography Mission World 3 arc second (NASA EOSDIS Land Processes DAAC, 2013); https://lpdaac.usgs.gov/merchandise/srtmgl3v003/

  • NASA/METI/AIST/Japan Spacesystems and Japan/US ASTER Science Crew. ASTER World Digital Elevation Model V003 (NASA EOSDIS Land Processes DAAC, 2018); https://lpdaac.usgs.gov/merchandise/astgtmv003/

  • Liu, J. et al. Validation of common determination imaging spectroradiometer (MODIS) albedo retrieval algorithm: dependence of albedo on photograph voltaic zenith angle. J. Geophys. Res. Atmos. 114, D01106 (2009).

    Google Scholar 

  • Chen, J. M., Liu, J., Cihlar, J. & Goulden, M. L. Every day cowl photosynthesis model by the use of temporal and spatial scaling for distant sensing features. Ecol. Model. 124, 99–119 (1999).

    Google Scholar 

  • Ham, J. M. in Micrometeorology in Agricultural Applications Vol. 47 (eds Hatfield, J. L. & Baker, J. M.) 533–560 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2005).

  • Ryu, Y., Jiang, C., Kobayashi, H. & Detto, M. MODIS-derived worldwide land merchandise of shortwave radiation and diffuse and entire photosynthetically full of life radiation at 5 km determination from 2000. Distant Sens. Environ. 204, 812–825 (2018).

    Google Scholar 

  • Desai, A. R., Vesala, T. & Rantakari, M. Measurements, modeling, and scaling of inland water gasoline alternate. Eos 96 (2015).

  • Vivid, R. M. & O’Halloran, T. L. A Month-to-month Shortwave Radiative Forcing Kernel for Ground Albedo Change Using CERES Satellite tv for pc television for laptop Information Mannequin 1 (Environmental Information Initiative, 2019).

  • Joos, F. et al. Carbon dioxide and native climate impulse response capabilities for the computation of greenhouse gasoline metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    Google Scholar 

  • Lehner, B. et al. World Reservoir and Dam (GRanD) Database Technical documentation, Mannequin 1.1 (SEDAC, 2011).

  • Mu, M., Tang, Q., Han, S., Liu, X. & Cui, H. Using GRanD database and ground water data to constrain area–storage curve of reservoirs. Water 12, 1242 (2020).

    Google Scholar 

  • Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. Extreme-resolution mapping of world ground water and its long-term modifications. Nature 540, 418–422 (2016).

    Google Scholar 

  • Pianosi, F. & Wagener, T. A straightforward and surroundings pleasant methodology for worldwide sensitivity analysis based mostly totally on cumulative distribution capabilities. Environ. Model. Softw. 67, 1–11 (2015).

    Google Scholar 

  • Pianosi, F., Sarrazin, F. & Wagener, T. A Matlab toolbox for worldwide sensitivity analysis. Environ. Model. Softw. 70, 80–85 (2015).

    Google Scholar 

  • R Core Crew. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • RStudio. Constructed-in Progress for R (RStudio, 2019).

  • Grömping, U. Relative significance for linear regression in R: the bundle relaimpo. J. Stat. Softw. 17, https://doi.org/10.18637/jss.v017.i01 (2006).

  • You may also like