Writy.
  • Wind & Solar Energy Portal
  • Solar Energy
  • Solar Panel
  • Wind Energy
  • Wind Turbine
  • Hydroelectric Energy
  • Sea and Marine Energy
  • Solar and Wind Images
No Result
View All Result
Writy.
  • Wind & Solar Energy Portal
  • Solar Energy
  • Solar Panel
  • Wind Energy
  • Wind Turbine
  • Hydroelectric Energy
  • Sea and Marine Energy
  • Solar and Wind Images
No Result
View All Result
Writy.
No Result
View All Result

The albedo–native climate penalty of hydropower reservoirs

by Marvin Brant
December 12, 2022
in Hydroelectric Energy
0

  • Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    You might also like

    Con edison on using ldes technology to help decarbonise nyc - "Revolutionizing New York: Con Edison's Journey with LDES Technology for a Greener Future"

    “Revolutionizing New York: Con Edison’s Journey with LDES Technology for a Greener Future”

    May 7, 2025
    Stability analysis of grid connected hydropower plant considering turbine nonlinearity and - Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    April 28, 2025

    Google Scholar 

  • Goodwin, P. et al. Pathways to 1.5 °C and a few °C warming based mostly totally on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

    Google Scholar 

  • Chu, S., Cui, Y. & Liu, N. The path within the course of sustainable vitality. Nat. Mater. 16, 16–22 (2016).

    Google Scholar 

  • Hoffert, M. I. et al. Superior know-how paths to worldwide native climate stability: vitality for a greenhouse planet. Science 298, 981–987 (2002).

    Google Scholar 

  • Yang, W. et al. Burden on hydropower objects for short-term balancing of renewable vitality strategies. Nat. Commun. 9, 2633 (2018).

    Google Scholar 

  • Jacobson, M. Z. 100% Clear, Renewable Vitality and Storage for Each little factor (Cambridge Univ. Press, 2020).

  • van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, Okay. Vitality-generation system vulnerability and adaptation to modifications in native climate and water sources. Nat. Clim. Change 6, 375–380 (2016).

    Google Scholar 

  • Turner, S. W. D., Ng, J. Y. & Galelli, S. Inspecting worldwide electrical vitality present vulnerability to native climate change using a high-fidelity hydropower dam model. Sci. Entire Environ. 590–591, 663–675 (2017).

    Google Scholar 

  • Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, Okay. A world progress in hydropower dam improvement. Aquat. Sci. 77, 161–170 (2014).

    Google Scholar 

  • Farinotti, D., Spherical, V., Huss, M., Compagno, L. & Zekollari, H. Big hydropower and water-storage potential in future glacier-free basins. Nature 575, 341–344 (2019).

    Google Scholar 

  • Wehrli, B. Native climate science: renewable nevertheless not carbon-free. Nat. Geosci. 4, 585–586 (2011).

    Google Scholar 

  • Scherer, L. & Pfister, S. Hydropower’s biogenic carbon footprint. PLoS ONE 11, e0161947 (2016).

    Google Scholar 

  • Ocko, I. B. & Hamburg, S. P. Native climate impacts of hydropower: enormous variations amongst facilities and over time. Environ. Sci. Technol. 53, 14070–14082 (2019).

    Google Scholar 

  • Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).

    Google Scholar 

  • Cogley, J. G. The albedo of water as a carry out of latitude. Mon. Local weather Rev. 107, 775–781 (1979).

    Google Scholar 

  • Cescatti, A. et al. Intercomparison of MODIS albedo retrievals and in situ measurements all through the worldwide FLUXNET neighborhood. Distant Sens. Environ. 121, 323–334 (2012).

    See also
    The Age of the Battery

    Google Scholar 

  • Vivid, R. M., Bogren, W., Bernier, P. & Astrup, R. Carbon-equivalent metrics for albedo modifications in land administration contexts: relevance of the time dimension. Ecol. Appl. 26, 1868–1880 (2016).

    Google Scholar 

  • Kirschbaum, M. U. F. et al. Implications of albedo modifications following afforestation on some great benefits of forests as carbon sinks. Biogeosciences 8, 3687–3696 (2011).

    Google Scholar 

  • Vivid, R. M. & Kvalevåg, M. M. Technical discover: evaluating a straightforward parameterization of radiative shortwave forcing from ground albedo change. Atmos. Chem. Phys. 13, 11169–11174 (2013).

    Google Scholar 

  • Vivid, R. M. & O’Halloran, T. L. Rising a month-to-month radiative kernel for ground albedo change from satellite tv for pc television for laptop climatologies of Earth’s shortwave radiation funds: CACK v1.0. Geosci. Model Dev. 12, 3975–3990 (2019).

    Google Scholar 

  • Projected Costs of Producing Electrical vitality (Worldwide Vitality Firm and Nuclear Vitality Firm, 2010).

  • Bala, G. et al. Combined native climate and carbon-cycle outcomes of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    Google Scholar 

  • Bonan, G. B. Forests and native climate change: native climate benefits of forests. Science 320, 1444–1449 (2008).

    Google Scholar 

  • Myhre, G., Kvalevåg, M. M. & Schaaf, C. B. Radiative forcing on account of anthropogenic vegetation change based mostly totally on MODIS ground albedo data. Geophys. Res. Lett. 32, L21410 (2005).

    Google Scholar 

  • Seneviratne, S. I. et al. Land radiative administration as contributor to regional-scale native climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    MathSciNet 

    Google Scholar 

  • Riahi, Okay. et al. The Shared Socioeconomic Pathways and their vitality, land use, and greenhouse gasoline emissions implications: a top level view. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • Rogelj, J. et al. Eventualities within the course of limiting worldwide suggest temperature improve beneath 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Google Scholar 

  • Couto, T. B. A. & Olden, J. D. World proliferation of small hydropower vegetation – science and protection. Entrance. Ecol. Environ. 16, 91–100 (2018).

    Google Scholar 

  • Ardizzon, G., Cavazzini, G. & Pavesi, G. A model new expertise of small hydro and pumped-hydro vitality vegetation: advances and future challenges. Renew. Preserve. Vitality Rev. 31, 746–761 (2014).

    Google Scholar 

  • CO2 Emissions from Gasoline Combustion (Worldwide Vitality Firm, 2016).

  • Ang, B. W. & Su, B. Carbon emission depth in electrical vitality manufacturing: a worldwide analysis. Vitality Protection 94, 56–63 (2016).

    See also
    See DOE and Nationwide Laboratories at Clear Currents 2023

    Google Scholar 

  • Gibson, L., Wilman, E. N. & Laurance, W. F. How inexperienced is ‘inexperienced’ vitality? Tendencies Ecol. Evol. 32, 922–935 (2017).

    Google Scholar 

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Google Scholar 

  • Moran, E. F., Lopez, M. C., Moore, N., Muller, N. & Hyndman, D. W. Sustainable hydropower throughout the twenty first century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).

    Google Scholar 

  • Zarfl, C. et al. Future big hydropower dams impression worldwide freshwater megafauna. Sci. Rep. 9, 18531 (2019).

    Google Scholar 

  • Winemiller, Okay. O. et al. Balancing hydropower and biodiversity throughout the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Google Scholar 

  • Reid, A. J. et al. Rising threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Google Scholar 

  • Barbarossa, V. et al. Impacts of current and future big dams on the geographic differ connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).

    Google Scholar 

  • Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow into regulation of the world’s big river strategies. Science 308, 405–408 (2005).

    Google Scholar 

  • Johnson, P. T. J., Olden, J. D. & Vander Zanden, M. J. Dam invaders: impoundments facilitate natural invasions into freshwaters. Entrance. Ecol. Environ. 6, 357–363 (2008).

    Google Scholar 

  • Maavara, T. et al. River dam impacts on biogeochemical biking. Nat. Rev. Earth Environ. 1, 103–116 (2020).

    Google Scholar 

  • Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment present as a driver of river meandering and floodplain evolution throughout the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Google Scholar 

  • Richter, B. D. et al. Misplaced in enchancment’s shadow: the downstream human penalties of dams. Water Alter. 3, 14–42 (2010).

    Google Scholar 

  • Lehner, B. et al. Extreme-resolution mapping of the world’s reservoirs and dams for sustainable river-flow administration. Entrance. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  • World Vitality Plant Database (GPPD) (World Belongings Institute, 2018); https://datasets.wri.org/dataset/globalpowerplantdatabase

  • Schaaf, C. & Wang, Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Every day L3 World – 500m V006 (NASA EOSDIS Land Processes DAAC, 2019); https://lpdaac.usgs.gov/merchandise/mcd43a1v006/

  • Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cowl Type Yearly L3 World 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://lpdaac.usgs.gov/merchandise/mcd12q1v006/

  • NASA JPL NASA Shuttle Radar Topography Mission World 3 arc second (NASA EOSDIS Land Processes DAAC, 2013); https://lpdaac.usgs.gov/merchandise/srtmgl3v003/

  • NASA/METI/AIST/Japan Spacesystems and Japan/US ASTER Science Crew. ASTER World Digital Elevation Model V003 (NASA EOSDIS Land Processes DAAC, 2018); https://lpdaac.usgs.gov/merchandise/astgtmv003/

    See also
    Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics
  • Liu, J. et al. Validation of common determination imaging spectroradiometer (MODIS) albedo retrieval algorithm: dependence of albedo on photograph voltaic zenith angle. J. Geophys. Res. Atmos. 114, D01106 (2009).

    Google Scholar 

  • Chen, J. M., Liu, J., Cihlar, J. & Goulden, M. L. Every day cowl photosynthesis model by the use of temporal and spatial scaling for distant sensing features. Ecol. Model. 124, 99–119 (1999).

    Google Scholar 

  • Ham, J. M. in Micrometeorology in Agricultural Applications Vol. 47 (eds Hatfield, J. L. & Baker, J. M.) 533–560 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2005).

  • Ryu, Y., Jiang, C., Kobayashi, H. & Detto, M. MODIS-derived worldwide land merchandise of shortwave radiation and diffuse and entire photosynthetically full of life radiation at 5 km determination from 2000. Distant Sens. Environ. 204, 812–825 (2018).

    Google Scholar 

  • Desai, A. R., Vesala, T. & Rantakari, M. Measurements, modeling, and scaling of inland water gasoline alternate. Eos 96 (2015).

  • Vivid, R. M. & O’Halloran, T. L. A Month-to-month Shortwave Radiative Forcing Kernel for Ground Albedo Change Using CERES Satellite tv for pc television for laptop Information Mannequin 1 (Environmental Information Initiative, 2019).

  • Joos, F. et al. Carbon dioxide and native climate impulse response capabilities for the computation of greenhouse gasoline metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    Google Scholar 

  • Lehner, B. et al. World Reservoir and Dam (GRanD) Database Technical documentation, Mannequin 1.1 (SEDAC, 2011).

  • Mu, M., Tang, Q., Han, S., Liu, X. & Cui, H. Using GRanD database and ground water data to constrain area–storage curve of reservoirs. Water 12, 1242 (2020).

    Google Scholar 

  • Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. Extreme-resolution mapping of world ground water and its long-term modifications. Nature 540, 418–422 (2016).

    Google Scholar 

  • Pianosi, F. & Wagener, T. A straightforward and surroundings pleasant methodology for worldwide sensitivity analysis based mostly totally on cumulative distribution capabilities. Environ. Model. Softw. 67, 1–11 (2015).

    Google Scholar 

  • Pianosi, F., Sarrazin, F. & Wagener, T. A Matlab toolbox for worldwide sensitivity analysis. Environ. Model. Softw. 70, 80–85 (2015).

    Google Scholar 

  • R Core Crew. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • RStudio. Constructed-in Progress for R (RStudio, 2019).

  • Grömping, U. Relative significance for linear regression in R: the bundle relaimpo. J. Stat. Softw. 17, https://doi.org/10.18637/jss.v017.i01 (2006).

  • Marvin Brant

    Related Stories

    Con edison on using ldes technology to help decarbonise nyc - "Revolutionizing New York: Con Edison's Journey with LDES Technology for a Greener Future"

    “Revolutionizing New York: Con Edison’s Journey with LDES Technology for a Greener Future”

    by Marvin Brant
    May 7, 2025
    0

    This panel was overseen by Allison Weis, global head of storage at the market research and analysis firm Wood Mackenzie....

    Stability analysis of grid connected hydropower plant considering turbine nonlinearity and - Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    Dynamic Stability Insights for Grid-Connected Hydropower: Addressing Turbine Nonlinearity and Adaptive Penstock Dynamics

    by Marvin Brant
    April 28, 2025
    0

    In this investigation, the GCHTGS primarily comprises an upstream reservoir, penstock, governor, hydro-turbine, generator, downstream reservoir, and PG, as illustrated...

    Battery power online | maximizing efficiency and profit in fleet - "Revolutionizing Fleet Charging: Unlocking Profitability and Efficiency with On-Site Batteries and Smart Energy Solutions"

    “Revolutionizing Fleet Charging: Unlocking Profitability and Efficiency with On-Site Batteries and Smart Energy Solutions”

    by Marvin Brant
    April 20, 2025
    0

    Insightful Commentary from Oren Halevi, Chief Product Officer, Driivz    April 14, 2025 | Escalating energy requirements have electricity users and...

    Quantifying the impact of extreme weather on chinas hydropower–wind–solar renewable - Harnessing Nature's Fury: Evaluating Extreme Weather's Influence on China's Green Energy Triad

    Harnessing Nature’s Fury: Evaluating Extreme Weather’s Influence on China’s Green Energy Triad

    by Marvin Brant
    April 14, 2025
    0

    Liu, Z. & He, X. Balancing-focused hydropower management renders the clean energy transition more economical while also enhancing water security....

    Next Post
    THE E-LEARNING PROGRAM "FOSTERING AND HANDLING BLUE DEVELOPMENT PROSPECTIVE IN THE MEDITERRANEAN" FROM HEAVEN DEVELOPMENT AREA OPENS UP FOR ENROLLMENT

    THE E-LEARNING PROGRAM "FOSTERING AND HANDLING BLUE DEVELOPMENT PROSPECTIVE IN THE MEDITERRANEAN" FROM HEAVEN DEVELOPMENT AREA OPENS UP FOR ENROLLMENT

    Windy

    News About Solar System And Turbine Winds

    • Privacy Policy
    • Contact Us

    © 2022-2023 | WindySolar.com

    No Result
    View All Result
    • Wind & Solar Energy Portal
    • Solar Energy
    • Solar Panel
    • Wind Energy
    • Wind Turbine
    • Hydroelectric Energy
    • Sea and Marine Energy
    • Solar and Wind Images

    © 2022-2023 | WindySolar.com