Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).
Goodwin, P. et al. Pathways to 1.5 °C and a few °C warming based mostly totally on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).
Chu, S., Cui, Y. & Liu, N. The path within the course of sustainable vitality. Nat. Mater. 16, 16–22 (2016).
Hoffert, M. I. et al. Superior know-how paths to worldwide native climate stability: vitality for a greenhouse planet. Science 298, 981–987 (2002).
Yang, W. et al. Burden on hydropower objects for short-term balancing of renewable vitality strategies. Nat. Commun. 9, 2633 (2018).
Jacobson, M. Z. 100% Clear, Renewable Vitality and Storage for Each little factor (Cambridge Univ. Press, 2020).
van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, Okay. Vitality-generation system vulnerability and adaptation to modifications in native climate and water sources. Nat. Clim. Change 6, 375–380 (2016).
Turner, S. W. D., Ng, J. Y. & Galelli, S. Inspecting worldwide electrical vitality present vulnerability to native climate change using a high-fidelity hydropower dam model. Sci. Entire Environ. 590–591, 663–675 (2017).
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, Okay. A world progress in hydropower dam improvement. Aquat. Sci. 77, 161–170 (2014).
Farinotti, D., Spherical, V., Huss, M., Compagno, L. & Zekollari, H. Big hydropower and water-storage potential in future glacier-free basins. Nature 575, 341–344 (2019).
Wehrli, B. Native climate science: renewable nevertheless not carbon-free. Nat. Geosci. 4, 585–586 (2011).
Scherer, L. & Pfister, S. Hydropower’s biogenic carbon footprint. PLoS ONE 11, e0161947 (2016).
Ocko, I. B. & Hamburg, S. P. Native climate impacts of hydropower: enormous variations amongst facilities and over time. Environ. Sci. Technol. 53, 14070–14082 (2019).
Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).
Cogley, J. G. The albedo of water as a carry out of latitude. Mon. Local weather Rev. 107, 775–781 (1979).
Cescatti, A. et al. Intercomparison of MODIS albedo retrievals and in situ measurements all through the worldwide FLUXNET neighborhood. Distant Sens. Environ. 121, 323–334 (2012).
Vivid, R. M., Bogren, W., Bernier, P. & Astrup, R. Carbon-equivalent metrics for albedo modifications in land administration contexts: relevance of the time dimension. Ecol. Appl. 26, 1868–1880 (2016).
Kirschbaum, M. U. F. et al. Implications of albedo modifications following afforestation on some great benefits of forests as carbon sinks. Biogeosciences 8, 3687–3696 (2011).
Vivid, R. M. & Kvalevåg, M. M. Technical discover: evaluating a straightforward parameterization of radiative shortwave forcing from ground albedo change. Atmos. Chem. Phys. 13, 11169–11174 (2013).
Vivid, R. M. & O’Halloran, T. L. Rising a month-to-month radiative kernel for ground albedo change from satellite tv for pc television for laptop climatologies of Earth’s shortwave radiation funds: CACK v1.0. Geosci. Model Dev. 12, 3975–3990 (2019).
Projected Costs of Producing Electrical vitality (Worldwide Vitality Firm and Nuclear Vitality Firm, 2010).
Bala, G. et al. Combined native climate and carbon-cycle outcomes of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).
Bonan, G. B. Forests and native climate change: native climate benefits of forests. Science 320, 1444–1449 (2008).
Myhre, G., Kvalevåg, M. M. & Schaaf, C. B. Radiative forcing on account of anthropogenic vegetation change based mostly totally on MODIS ground albedo data. Geophys. Res. Lett. 32, L21410 (2005).
Seneviratne, S. I. et al. Land radiative administration as contributor to regional-scale native climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).
Google Scholar
Riahi, Okay. et al. The Shared Socioeconomic Pathways and their vitality, land use, and greenhouse gasoline emissions implications: a top level view. Glob. Environ. Change 42, 153–168 (2017).
Rogelj, J. et al. Eventualities within the course of limiting worldwide suggest temperature improve beneath 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).
Couto, T. B. A. & Olden, J. D. World proliferation of small hydropower vegetation – science and protection. Entrance. Ecol. Environ. 16, 91–100 (2018).
Ardizzon, G., Cavazzini, G. & Pavesi, G. A model new expertise of small hydro and pumped-hydro vitality vegetation: advances and future challenges. Renew. Preserve. Vitality Rev. 31, 746–761 (2014).
CO2 Emissions from Gasoline Combustion (Worldwide Vitality Firm, 2016).
Ang, B. W. & Su, B. Carbon emission depth in electrical vitality manufacturing: a worldwide analysis. Vitality Protection 94, 56–63 (2016).
Gibson, L., Wilman, E. N. & Laurance, W. F. How inexperienced is ‘inexperienced’ vitality? Tendencies Ecol. Evol. 32, 922–935 (2017).
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Moran, E. F., Lopez, M. C., Moore, N., Muller, N. & Hyndman, D. W. Sustainable hydropower throughout the twenty first century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).
Zarfl, C. et al. Future big hydropower dams impression worldwide freshwater megafauna. Sci. Rep. 9, 18531 (2019).
Winemiller, Okay. O. et al. Balancing hydropower and biodiversity throughout the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).
Reid, A. J. et al. Rising threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).
Barbarossa, V. et al. Impacts of current and future big dams on the geographic differ connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).
Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow into regulation of the world’s big river strategies. Science 308, 405–408 (2005).
Johnson, P. T. J., Olden, J. D. & Vander Zanden, M. J. Dam invaders: impoundments facilitate natural invasions into freshwaters. Entrance. Ecol. Environ. 6, 357–363 (2008).
Maavara, T. et al. River dam impacts on biogeochemical biking. Nat. Rev. Earth Environ. 1, 103–116 (2020).
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment present as a driver of river meandering and floodplain evolution throughout the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).
Richter, B. D. et al. Misplaced in enchancment’s shadow: the downstream human penalties of dams. Water Alter. 3, 14–42 (2010).
Lehner, B. et al. Extreme-resolution mapping of the world’s reservoirs and dams for sustainable river-flow administration. Entrance. Ecol. Environ. 9, 494–502 (2011).
World Vitality Plant Database (GPPD) (World Belongings Institute, 2018); https://datasets.wri.org/dataset/globalpowerplantdatabase
Schaaf, C. & Wang, Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Every day L3 World – 500m V006 (NASA EOSDIS Land Processes DAAC, 2019); https://lpdaac.usgs.gov/merchandise/mcd43a1v006/
Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cowl Type Yearly L3 World 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://lpdaac.usgs.gov/merchandise/mcd12q1v006/
NASA JPL NASA Shuttle Radar Topography Mission World 3 arc second (NASA EOSDIS Land Processes DAAC, 2013); https://lpdaac.usgs.gov/merchandise/srtmgl3v003/
NASA/METI/AIST/Japan Spacesystems and Japan/US ASTER Science Crew. ASTER World Digital Elevation Model V003 (NASA EOSDIS Land Processes DAAC, 2018); https://lpdaac.usgs.gov/merchandise/astgtmv003/
Liu, J. et al. Validation of common determination imaging spectroradiometer (MODIS) albedo retrieval algorithm: dependence of albedo on photograph voltaic zenith angle. J. Geophys. Res. Atmos. 114, D01106 (2009).
Chen, J. M., Liu, J., Cihlar, J. & Goulden, M. L. Every day cowl photosynthesis model by the use of temporal and spatial scaling for distant sensing features. Ecol. Model. 124, 99–119 (1999).
Ham, J. M. in Micrometeorology in Agricultural Applications Vol. 47 (eds Hatfield, J. L. & Baker, J. M.) 533–560 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2005).
Ryu, Y., Jiang, C., Kobayashi, H. & Detto, M. MODIS-derived worldwide land merchandise of shortwave radiation and diffuse and entire photosynthetically full of life radiation at 5 km determination from 2000. Distant Sens. Environ. 204, 812–825 (2018).
Desai, A. R., Vesala, T. & Rantakari, M. Measurements, modeling, and scaling of inland water gasoline alternate. Eos 96 (2015).
Vivid, R. M. & O’Halloran, T. L. A Month-to-month Shortwave Radiative Forcing Kernel for Ground Albedo Change Using CERES Satellite tv for pc television for laptop Information Mannequin 1 (Environmental Information Initiative, 2019).
Joos, F. et al. Carbon dioxide and native climate impulse response capabilities for the computation of greenhouse gasoline metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).
Lehner, B. et al. World Reservoir and Dam (GRanD) Database Technical documentation, Mannequin 1.1 (SEDAC, 2011).
Mu, M., Tang, Q., Han, S., Liu, X. & Cui, H. Using GRanD database and ground water data to constrain area–storage curve of reservoirs. Water 12, 1242 (2020).
Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. Extreme-resolution mapping of world ground water and its long-term modifications. Nature 540, 418–422 (2016).
Pianosi, F. & Wagener, T. A straightforward and surroundings pleasant methodology for worldwide sensitivity analysis based mostly totally on cumulative distribution capabilities. Environ. Model. Softw. 67, 1–11 (2015).
Pianosi, F., Sarrazin, F. & Wagener, T. A Matlab toolbox for worldwide sensitivity analysis. Environ. Model. Softw. 70, 80–85 (2015).
R Core Crew. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
RStudio. Constructed-in Progress for R (RStudio, 2019).
Grömping, U. Relative significance for linear regression in R: the bundle relaimpo. J. Stat. Softw. 17, https://doi.org/10.18637/jss.v017.i01 (2006).