Ghribi, D., Khelifa, A., Diaf, S. & & Belhamel, M. Research of hydrogen manufacturing system by utilizing PV solarenergy as well as PEM electrolyser in Algeria. Int. J. Hydrogen Power 38, 8480– 8490 (2013 ).
Google Scholar.
Meng, Y. et al. Framework– home connection of bifunctional MnO2 nanostructures: extremely reliable, ultra-stable electrochemical water oxidation as well as oxygen decrease response drivers determined in alkaline media. J. Am. Chem. Soc. 136, 11452– 11464 (2014 ).
Google Scholar.
Bediako, D. K., Surendranath, Y. & & Nocera, D. G. Mechanistic researches of the oxygen advancement response moderated by a nickel– borate slim movie electrocatalyst. J. Am. Chem. Soc. 135, 3662– 3674 (2013 ).
Google Scholar.
Seitz, L. C., Hersbach, T. J., Nordlund, D. & & Jaramillo, T. F. Improvement result of rare-earth elements on manganese oxide for the oxygen advancement response. J. Phys. Chem. Lett. 6, 4178– 4183 (2015 ).
Google Scholar.
Siracusano, S., Van Dijk, N., Payne-Johnson, E., Baglio, V. & & Aricò, A. S. Nanosized IrOx as well as IrRuOx electrocatalysts for the O2 advancement response in PEM water electrolysers. Appl. Catal. B-Environ. 164, 488– 495 (2015 ).
Google Scholar.
Katsounaros, I., Cherevko, S., Zeradjanin, A. R. & & Mayrhofer, K. J. Oxygen electrochemistry as a keystone for lasting power conversion. Angew. Chem. Int. Ed. 53, 102– 121 (2014 ).
Google Scholar.
Bajdich, M., García-Mota, M., Vojvodic, A., Nørskov, J. K. & & Bell, A. T. Theoretical examination of the task of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521– 13530 (2013 ).
Google Scholar.
Jiang, Z. J. & & Jiang, Z. Q. Communication generated high catalytic tasks of CoO nanoparticles expanded on nitrogen-doped hollow graphene microspheres for oxygen decrease as well as advancement responses. Sci. Associate 6, 27081, doi: 10.1038/ srep27081 (2016 ).
Google Scholar.
Rosen, J., Hutchings, G. S. & & Jiao, F. Ordered mesoporous cobalt oxide as extremely reliable oxygen advancement driver. J. Am. Chem. Soc. 135, 4516– 4521 (2013 ).
Google Scholar.
Xia, W. Y., Li, N., Li, Q. Y., Ye, K. H. & & Xu, C. W. Au-NiCo2O4 sustained on threedimensional ordered permeable graphene-like product for extremely reliable oxygen advancement response. Sci. Associate 6, 23398, doi: 10.1038/ srep23398 (2016 ).
Google Scholar.
Zhuang, Z., Sheng, W. & & Yan, Y. Synthesis of monodispere Au@Co3O4 core‐shell nanocrystals as well as their improved catalytic task for oxygen advancement response. Adv. Mater. 26, 3950– 3955 (2014 ).
Google Scholar.
Gu, Y. et al. Ordered permeable Co3O4@CoxFe3−xO4 movie as a sophisticated electrocatalyst for oxygen advancement response. RSC Adv 5, 8882– 8886 (2015 ).
Google Scholar.
Chen, S. et al. Microwave-assisted synthesis of mesoporous Co3O4 nanoflakes for applications in lithium ion batteries as well as oxygen advancement responses. Air Conditioning Appl. Mater. User Interfaces 7, 3306– 3313 (2015 ).
Google Scholar.
Zhao, Y. F. et al. Graphene-Co3O4 nanocomposite as electrocatalyst with high efficiency for oxygen advancement response. Sci. Associate 5, 7629, doi: 10.1038/ srep07629 (2015 ).
Google Scholar.
Zou, X. et al. Reliable oxygen advancement response militarized by low-density Ni-doped Co3O4 nanomaterials originated from metal-embedded graphitic C3N4. Chem. Commun. 49, 7522– 7524 (2013 ).
Google Scholar.
Ren, Y., Ma, Z. & & Bruce, P. G. Purchased mesoporous steel oxides: synthesis as well as applications. Chem. Soc. Rev. 41, 4909– 4927 (2012 ).
Google Scholar.
Ungureanu, A. et al. Composition-dependent morphostructural residential properties of Ni– Cu oxide nanoparticles restricted within the networks of gotten mesoporous SBA-15 silica. Air Conditioning Appl. Mater. User Interfaces 5(* ), 3010– 3025( 2013). Post.
CAS.
Google Scholar.
Air Conditioning Appl. Mater. User Interfaces 7 , 11460– 11466 (2015 ). Post.
CAS.
Google Scholar.
Adv. Feature. Mater 23, 900– 911 (2013 ). Post.
CAS.
Google Scholar.
Appl. Catal. B-Environ. 93 , 395– 405 (2010 ). Post.
CAS.
Google Scholar.
Appl. Catal. B-Environ. 142 , 72– 79 (2013 ). Post.
Google Scholar.
Chem. Commun. 48 , 865– 867 (2012 ). Post.
CAS.
Google Scholar.
Mater. Lett. 88 , 57– 60 (2012 ). Post.
CAS.
Google Scholar.
J. Am. Chem. Soc. 132 , 6882– 6883 (2010 ). Post.
CAS.
Google Scholar.
Air Conditioning Appl. Mater. User Interfaces 6 , 22778– 22789 (2014 ). Post.
CAS.
Google Scholar.
Electrochem. Solid-State Lett 14, E5– E7 (2011 ). Post.
CAS.
Google Scholar.
Chem. Sci 6, 3321– 3328 (2015 ). Post.
CAS.
Google Scholar.
Nano Res 8, 156– 164 (2015 ). Post.
CAS.
Google Scholar.
Electrochim. Acta 146 , 119– 124 (2014 ). Post.
CAS.
Google Scholar.
Sitting Raman research study of nickel oxide as well as gold-supported nickel oxide drivers for the electrochemical advancement of oxygen. J. Phys. Chem. C. 116 , 8394– 8400 (2012 ). Post.
CAS.
Google Scholar.
J. Source Of Power 300 , 285– 293( 2015). Post.
ADS.
CAS.
Google Scholar.
ChemPlusChem 79, 1569– 1572 (2014 ). Post.
CAS.
Google Scholar.
Chem. Eur. J 20, 15533– 15542 (2014 ). Post.
CAS.
Google Scholar.
J. Am. Chem. Soc. 133 , 5587– 5593 (2011 ). Post.
CAS.
Google Scholar.
Acs Catalysis 2 , 1765– 1772 (2012 ). Post.
CAS.
Google Scholar.
Chem. Commun. 17 , 2136– 2137 (2003 ). Post.
Google Scholar.
J. Mater. Chem. A 3, 11367– 11375 (2015 ). Post.
ADS.
CAS.
Google Scholar.
RSC Adv 5, 42922– 42930 (2015 ). Post.
MathSciNet.
CAS.
Google Scholar.
sitting catalytic decrease of NO with H2. J. Am. Chem. Soc. 133 , 13455– 13464 (2011 ). Post.
CAS.
Google Scholar.
J. Catal. 254 , 310– 324 (2008 ). Post.
CAS.
Google Scholar.
Chem. Commun. 49 , 943– 946 (2013 ). Post.
CAS.
Google Scholar.
Air Conditioning Appl. Mater. User Interfaces 7 , 21745– 21750 (2015 ). Post.
CAS.
Google Scholar.
Chem. Commun. 50 , 10122– 10125 (2014 ). Post.
CAS.
Google Scholar.
Int. J. Hydrogen Power, 25, 1163– 1170 (2000 ). Post.
CAS.
Google Scholar.