Almeida, R. M. et al. Strategic planning of hydropower growth: balancing advantages and socioenvironmental prices. Curr. Opin. Environ. Maintain. 56, 101175 (2022).
Google Scholar
The Altering Function of Hydropower: Challenges and Alternatives Technical Report (IRENA, 2023).
World Register of Dams (ICOLD, 2020).
Zhou, Y. et al. A complete view of worldwide potential for hydro-generated electrical energy. Power Environ. Sci. 8, 2622–2633 (2015).
Google Scholar
Xu, R. et al. A world-scale framework for hydropower growth incorporating strict environmental constraints. Nat. Water 1, 113–122 (2023).
Google Scholar
Jacobson, M. Z. et al. Low-cost options to international warming, air air pollution, and power insecurity for 145 nations. Power Environ. Sci. 15, 3343–3359 (2022).
Cáceres, A. L., Jaramillo, P., Matthews, H. S., Samaras, C. & Nijssen, B. Potential hydropower contribution to mitigate local weather danger and construct resilience in Africa. Nat. Clim. Change 12, 719–727 (2022).
Google Scholar
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Google Scholar
Zarfl, C. et al. Future massive hydropower dams impression international freshwater megafauna. Sci. Rep. 9, 18531 (2019).
Google Scholar
Fan, P. et al. Lately constructed hydropower dams had been related to lowered financial manufacturing, inhabitants, and greenness in close by areas. Proc. Natl Acad. Sci. USA 119, e2108038119 (2022).
Google Scholar
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, Okay. A world growth in hydropower dam building. Aquat. Sci. 77, 161–170 (2015).
Google Scholar
Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Buying and selling-off fish biodiversity, meals safety, and hydropower within the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).
Google Scholar
Flecker, A. S. et al. Decreasing adversarial impacts of Amazon hydropower enlargement. Science 375, 753–760 (2022).
Google Scholar
Winemiller, Okay. O. et al. Balancing hydropower and biodiversity within the Amazon, Congo, and Mekong. Science https://doi.org/10.1126/science.aac7082 (2016).
Barbarossa, V. et al. Impacts of present and future massive dams on the geographic vary connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).
Google Scholar
Internet Zero by 2050 – A Roadmap for the World Power Sector Technical Report (IEA, 2021).
Zhang, Y. et al. Lengthy-term basin-scale hydropower enlargement below different situations in a worldwide multisector mannequin. Environ. Res. Lett. 17, 114029 (2022).
Google Scholar
Schmitt, R. J. P., Kittner, N., Kondolf, G. M. & Kammen, D. M. Deploy various renewables to save lots of tropical rivers. Nature 569, 330–332 (2019).
Google Scholar
Waldman, J., Sharma, S., Afshari, S. & Fekete, B. Photo voltaic-power alternative as an answer for hydropower foregone in US dam removals. Nat. Maintain. 2, 872–878 (2019).
Google Scholar
Almeida, R. M. et al. Floating solar energy might assist combat local weather change – let’s get it proper. Nature 606, 246–249 (2022).
Google Scholar
Gonzalez, J. M. et al. Designing diversified renewable power methods to stability multisector efficiency. Nat. Maintain. 6, 415–427 (2023).
Google Scholar
Siala, Okay., Chowdhury, A. Okay., Dang, T. & Galelli, S. Photo voltaic power and regional coordination as a possible different to massive hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).
Google Scholar
Schmitt, R. J. P., Kittner, N., Kondolf, G. M. & Kammen, D. M. Joint strategic power and river basin planning to scale back dam impacts on rivers in Myanmar. Environ. Res. Lett. 16, 054054 (2021).
Google Scholar
Chowdhury, A. F. M. Okay. et al. Enabling a low-carbon electrical energy system for Southern Africa. Joule 6, 1826–1844 (2022).
de Faria, F. A. M. & Jaramillo, P. The way forward for energy era in Brazil: an evaluation of options to Amazonian hydropower growth. Power Maintain. Dev. 41, 24–35 (2017).
Google Scholar
Opperman, J. J. et al. Balancing renewable power and river sources by shifting from particular person assessments of hydropower tasks to power system planning. Entrance. Environ. Sci. https://doi.org/10.3389/fenvs.2022.1036653 (2023).
Calvin, Okay. et al. GCAM v5.1: representing the linkages between power, water, land, local weather, and financial methods. Geosci. Mannequin Dev. 12, 677–698 (2019).
Google Scholar
van Vuuren, D. P. et al. The Shared Socio-economic Pathways: trajectories for human growth and international environmental change. Glob. Environ. Change 42, 148–152 (2017).
Google Scholar
Vimmerstedt, L. et al. 2021 Annual Know-how Baseline (ATB) Price and Efficiency Knowledge for Electrical energy Era Applied sciences (Nationwide Renewable Power Laboratory, 2021).
Schmitt, R. J. P., Bizzi, S., Castelletti, A., Opperman, J. J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping reveals limits for sustainable hydropower within the Mekong. Sci. Adv. 5, eaaw2175 (2019).
Google Scholar
Galelli, S., Dang, T. D., Ng, J. Y., Chowdhury, A. F. M. Okay. & Arias, M. E. Alternatives to curb hydrological alterations through dam re-operation within the Mekong. Nat. Maintain. 5, 1058–1069 (2022).
Google Scholar
World Power Outlook 2021 Technical Report (IEA, 2021).
Worldwide Power Outlook 2021 Technical Report https://www.eia.gov/outlooks/ieo/index.php (US Power Data Administration, 2021).
SAPP Pool Plan 2017 Technical Report (Southern African Energy Pool, 2017).
Gleick, P. H. Transitions to freshwater sustainability. Proc. Natl Acad. Sci. USA 115, 8863–8871 (2018).
Google Scholar
Almeida, R. M. et al. Decreasing greenhouse fuel emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281 (2019).
Google Scholar
The State of Meals Safety and Vitamin within the World 2021 (FAO, IFAD, UNICEF, WFP and WHO, 2021).
Zeng, R., Cai, X., Ringler, C. & Zhu, T. Hydropower versus irrigation – an evaluation of worldwide patterns. Environ. Res. Lett. 12, 034006 (2017)
Google Scholar
Murshed, S. B. & Kaluarachchi, J. J. Shortage of recent water sources within the Ganges Delta of Bangladesh. Water Secur. 4–5, 8–18 (2018).
Google Scholar
Shamsudduha, M. et al. The Bengal Water Machine: Quantified freshwater seize in Bangladesh. Science 377, 1315–1319 (2022).
Google Scholar
Chaudhari, S. et al. In-stream generators for rethinking hydropower growth within the Amazon basin. Nat. Maintain. 4, 680–687 (2021).
Google Scholar
Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D. & Garrote, L. Ecological impacts of run-of-river hydropower vegetation – present standing and future prospects on the point of power transition. Renew. Maintain. Power Rev. 142, 110833 (2021).
Google Scholar
Hunt, J. D. et al. World useful resource potential of seasonal pumped hydropower storage for power and water storage. Nat. Commun. 11, 947 (2020).
Google Scholar
Schomberg, A. C., Bringezu, S., Flörke, M. & Biederbick, H. Spatially specific life cycle assessments reveal hotspots of environmental impacts from renewable electrical energy era. Commun. Earth Environ. 3, 197 (2022).
Google Scholar
Wild, T. B., Reed, P. M., Loucks, D. P., Mallen-Cooper, M. & Jensen, E. D. Balancing hydropower growth and ecological impacts within the Mekong: tradeoffs for Sambor Mega Dam. J. Water Resour. Plan. Handle. 145, 05018019 (2019).
Google Scholar
Vinca, A. et al. Transboundary cooperation a possible path to sustainable growth within the Indus basin. Nat. Maintain. 4, 331–339 (2021).
Google Scholar
Guo, F. et al. Implications of intercontinental renewable electrical energy commerce for power methods and emissions. Nat. Power 7, 1144–1156 (2022).
Google Scholar
van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, Okay. Energy-generation system vulnerability and adaptation to adjustments in local weather and water sources. Nat. Clim. Change 6, 375–380 (2016).
Google Scholar
Kondolf, G. M. et al. Sustainable sediment administration in reservoirs and controlled rivers: experiences from 5 continents. Earths Future 2, 256–280 (2014).
Google Scholar
Carlino, A. et al. Declining value of renewables and local weather change curb the necessity for African hydropower enlargement. Science 381, eadf5848 (2023).
Google Scholar
Gernaat, D. E. H. J. et al. Local weather change impacts on renewable power provide. Nat. Clim. Change 11, 119–125 (2021).
Google Scholar
Turner, S. W. D., Voisin, N., Nelson, Okay. & Tidwell, V. Drought Impacts on Hydroelectric Energy Era within the Western United States – A Multiregional Evaluation of twenty first Century Hydropower Era Technical Report (US Pacific Northwest Nationwide Lab, 2022).
Santos da Silva, S. R. et al. Energy sector funding implications of local weather impacts on renewable sources in Latin America and the Caribbean. Nat. Commun. 12, 1276 (2021).
Google Scholar
Turner, S. W. D., Voisin, N., Fazio, J., Hua, D. & Jourabchi, M. Compound local weather occasions remodel electrical energy shortfall danger within the Pacific Northwest. Nat. Commun. 10, 8 (2019).
Google Scholar
Lamontagne, J. R. et al. Giant ensemble analytic framework for consequence-driven discovery of local weather change situations. Earths Future 6, 488–504 (2018).
Google Scholar
Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. Excessive-resolution evaluation of worldwide technical and financial hydropower potential. Nat. Power 2, 821–828 (2017).
Google Scholar
Garrett, Okay., McManamay, R. A. & Wang, J. World hydropower enlargement with out constructing new dams. Environ. Res. Lett. 16, 114029 (2021).
Google Scholar
Oberdorff, T. et al. World and regional patterns in riverine fish species richness: a overview. Int. J. Ecol. 2011, e967631 (2011).
Google Scholar
McIntyre, P. B., Reidy Liermann, C. A. & Revenga, C. Linking freshwater fishery administration to international meals safety and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).
Google Scholar
Clarke, J. F. & Edmonds, J. A. Modelling power applied sciences in a aggressive market. Power Econ. 15, 123–129 (1993).
Google Scholar
Brinkerink, M. & Deane, P. PLEXOS-World 2015 (Harvard Dataverse, 2021); https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CBYXBY
Huppmann, D. et al. IAMC 1.5 °C Situation Explorer and Knowledge hosted by IIASA (Built-in Evaluation Modeling Consortium, Worldwide Institute for Utilized Programs Evaluation, 2018); https://knowledge.ene.iiasa.ac.at/DOI/SR15/08-2018.15429/
Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower within the twenty first century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).
Google Scholar
Muratori, M. et al. Price of energy or energy of value: a U.S. modeling perspective. Renew. Maintain. Power Rev. 77, 861–874 (2017).
Google Scholar